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HW1 Grades are Posted

● Grades were generally good

● Check my comments!

– Come talk to me if you have any questions



  

PA1 is Due 9/17 @ noon

● Web-CAT submission will be active soon

● We will provide a few basic "public" tests

– These are not exhaustive!

● You should thoroughly test your own code

– Do not rely on the Web-CAT tests to do your
debugging for you



  

HW2 is Posted, Due 9/19

● Due Sept 19 @ 14:30 (2:30pm)

● Algorithm analysis practice

● Submit a PDF

– LaTeX (.tex template provided)
● Texmaker, Lyx, or ShareLatex.com

– MS Word / LibreOffice w/ equation editor
● Export as PDF!

– Scan of EXTREMELY NEAT handwriting!



  

Solutions Posted

● New "Files" section on Canvas

● Selected solutions

– Lab 3 (dictionaries)

– Lab 4 (class hierarchy)

– Homework 1 (basic Python)

● DO NOT distribute these outside the class!

– This is an honor code violation



  

Algorithm Analysis

● Motivation: “what” and “why”

● Mathematical functions

● Comparative & asymptotic analysis

● Big-O notation (not "Big-Oh"!)



  

Analyzing algorithms

● We want efficient algorithms

– What metric should we use?

– How should we normalize?

– How should we compare?



  

Empirical Analysis

● "Run it and see"

– Use the  time  module in Python

– Vary experiment parameters
● Input size, algorithm used, number of cores, etc.

– Report running times in a graph or table



  

Problems with Empirical Analysis

● Hard to compare across environments

– Hardware/software differences

● Hard to be comprehensive

– How many experiments do we need to run?

– Did we test all relevant input sizes?

● You actually need the code!

– We have to invest development time



  

Case Study

● Which is better?

Input Size Algorithm A Algorithm B

10 1 s 330 s

20 2 s 430 s

30 3 s 490 s

40 4 s 530 s



  

Case Study

● Which is better?

Input Size Algorithm A Algorithm B

10 1 s  330 s

20 2 s 430 s

30 3 s 490 s

40 4 s 530 s

1,000 100 s 997 s

10,000 1,000 s 1,329 s

100,000 10,000 s 1,661 s

1,000,000 100,000 s 1,993 s

~33 minutes~28 hours



  

Case Study

● Which is better?

Input Size Algorithm A Algorithm B

10 1.2 s 1.1 s

100 2.0 s 1.9 s

1,000 3.4 s 3.3 s

10,000 4.5 s 4.7 s

100,000 5.9 s 5.9 s

1,000,000 7.0 s 6.8 s



  

Case Study

● Which is better?

Input Size Algorithm A Algorithm B

10 1.2 s 1.1 s

100 2.0 s 1.9 s

1,000 3.4 s 3.3 s

10,000 4.5 s 4.7 s

100,000 5.9 s 5.9 s

1,000,000 7.0 s 6.8 s

Algorithm A Algorithm B

1 MB 1 MB

2 MB 11 MB

3 MB 96 MB

4 MB 1 GB

5 MB 12 GB

6 MB 140 GB



  

Case Study

● Which is better?

def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
    return found

def search(array, item):
    left = 0
    right = len(array)
    while right > left+1:
        mid = (right-left)//2 + left
        if array[mid] > item:
            right = mid
        elif array[mid] < item:
            left = mid+1
        else:
            left = mid
            right = mid+1
    return left < len(array) and \
           array[left] == item



  

Case Study

● Which is better?

def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
    return found

def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
            break
    return found



  

Case Study

● Which is better?

Best: n comparisons
Worst: n comparisons
Average: n comparisons

def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
    return found

def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
            break
    return found



  

Case Study

● Which is better?

Best: n comparisons
Worst: n comparisons
Average: n comparisons

Best: 1 comparison
Worst: n comparisons
Average: n/2 comparisons

def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
    return found

def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
            break
    return found



  

Lessons Learned

● Running times can be deceiving

– We have to normalize by input size

● CPU time isn't the only metric of interest

– Memory usage, I/O time, power usage, etc.

– Focus on “primitive operations” (for simplicity)

● Code length has little bearing on performance

– More complicated code can be faster

● Best, worst, average cases can all be different

– Focus on the worst case (for guarantees)



  

Analyzing algorithms

● We want efficient algorithms

– What metric should we use?

– How should we normalize?

– How should we compare?



  

Analyzing algorithms

● We want efficient algorithms

– What metric should we use?
● Worst-case primitive operations

– How should we normalize?

– How should we compare?



  

Analyzing algorithms

● We want efficient algorithms

– What metric should we use?
● Worst-case primitive operations

– How should we normalize?
● By input size

– How should we compare?



  

Analyzing algorithms

● We want efficient algorithms

– What metric should we use?
● Worst-case primitive operations

– How should we normalize?
● By input size

– How should we compare?
● Asymptotic analysis



  

Functions

● First, a brief foray into mathematics...

(don't worry, it will be brief!)



  

Functions

● Constant function:

f(n) = c

O(1)

● Input size doesn't matter

● As long as c is relatively small, constant time is
as good as it gets!



  

Functions

● Logarithm function:

f(n) = logb n

O(log n)

● Grows logarithmically with input size

– Usually the base (b) is 2

● Usually encountered with divide-and-conquer
methods



  

Functions

● Linear function:

f(n) = n

O(n)

● Grows linearly with input size

● Often, this is the best we can hope for

– Reading objects into memory is O(n)



  

Functions

● Linearithmic ("quasi-linear") function:

f(n) = n logb n

O(n log n)

● Grows slightly faster than linear

● Many important algorithms are O(n log n)

– Most of the "good" sorting algorithms



  

Functions

● Quadratic function:

f(n) = n2

O(n2)

● Scales quadratically with input size

● Usually arises from nested loops



  

Functions

● Cubic function:

f(n) = n3

O(n3)

● Scales cubically with input size

● Usually arises from triply-nested loops



  

Functions

● Polynomial function:

f(n) = nx

O(nx)

● Generalization of quadratic/cubic functions

● We want x to be as small as possible

– Usually, x > 4 is impractical



  

Functions

● Exponential function:

f(n) = bn

O(bn)

● Usually the base is 2

● Currently infeasible when n > ~100

● Avoid this!



  

Functions

● There are worse functions

– Factorial:  f(n) = n!

– Double exponential:  f(n) = bbn

● We won't be using these in this class

– But you should know the other eight!



  

Comparing Functions

● Plotting all functions on one graph is difficult

– Use log-log axes



  

Comparing Functions

● We now have an ordering of functions:

1.Constant:  f(n) = 1

2.Logarithmic: f(n) = log n

3.Linear:  f(n) = n

4.Linearithmic:  f(n) = n log n

5.Quadratic: f(n) = n2

6.Cubic:  f(n) = n3

7.Polynomial: f(n) = nb

8.Exponential:  f(n) = bn

(slowest-growing)

(fastest-growing)



  

Functions

● We have actually described eight function
families

– There are a infinite number of functions in each
family, with different constant scalar factors

– Example: n, 3n, and 42n are all linear functions

– Example: n2, 3n2, and 42n2 are all quadratic

– Within a family, smaller constants are better

– How do we compare between families?
● Use our function ordering!



  

Comparing Functions

● So we won't talk about the running time of an
algorithm ...

● … but rather we'll talk about how fast the
running time grows as the problem size
increases …

● … and compare the growth rates of various
algorithms



  

Comparing Functions

● This type of analysis is called "asymptotic
analysis"

● Because it deals with the behavior of functions
in the asymptotic sense as n (input size)
increases to infinity



  

Asymptotic Analysis

● Big-O notation

– Method for mathematically comparing functions

– Provides us with a robust way of saying "this
function grows faster than that one"

– We will use that statement as a proxy for: "this
algorithm is more efficient than that one"



  

Big-O Notation

● Formal definition:

– Let f(n) and g(n) be functions
● Mapping input sizes to running time

– We say this:
f(n)  is  O(g(n))

– If there is a constant c > 0 and an integer n0 ≥ 1
such that:

f(n) ≤ c∙g(n)        for n ≥ n0



  

Big-O Notation

● Informally, we say "f(n) is O(g(n))" if f(n) grows
as slow or slower than g(n)

– According to our ordering of function growth

● Or: "Algorithm X is O(f(n))" if the growth rate of
the running time of Algorithm X is O(f(n))

– Examples:
● "Linear search is O(n)"
● "Binary search is O(log n)"
● "Matrix multiplication is O(n3)"



  

Big-O Notation

● Instead of this:

● Some people say this:

● This is set notation describing sets or families of
functions

● Both are correct; I tend to use the former

f (n) ∈ O(g(n))

f (n) is O (g(n))



  

Big-O Notation

● Big-O:

f(n) is O(g(n))     iff.    f(n) ≤ c∙g(n)      for n ≥ n0

(upper bound)

● Big-Omega:

f(n) is Ω(g(n))     iff.    f(n) ≥ c∙g(n)        for n ≥ n0

(lower bound)

● Big-Theta:

f(n) is Θ(g(n))     iff.    c'∙g(n) ≤ f(n) ≤ c''∙g(n)        for n ≥ n0

(strict bounds: upper and lower)



  

Big-O Notation

● Limit-based definitions:

f(n) is O(g(n)) if

where c is a constant
and

c < ∞

lim
n→∞

f (n)
g(n)

= c lim
n→∞

f (n)
g(n)

= c lim
n→∞

f (n)
g(n)

= c

f(n) is Ω(g(n)) if

where c is a constant
and

c > 0

f(n) is Θ(g(n)) if

where c is a constant
and

0 < c < ∞



  

Big-O Notation

● We now have a strict ordering of complexity classes:

1.  Constant: Θ(1)

2.  Logarithmic: Θ(log n)

3.  Linear: Θ(n)

4.  Linearithmic: Θ(n log n)

5.  Quadratic: Θ(n2)

6.  Cubic: Θ(n3)

7.  Polynomial: Θ(nb)

8.  Exponential: Θ(bn)

(slowest-growing)

(fastest-growing)



  

Big-O Notation

● Find the slowest-growing function family for
which the Big-O definition is true

– Example: Don't say Algorithm X is O(n3) if it is O(n2)
even though the former is technically true as well

– Walking traveler example

● Drop slower-growing ("lower-order") terms

– Example: Don't say Algorithm X is O(n + log n)
● Drop the slower-growing function and say it is O(n)

– Goldfish/elephant example



  

A Word of Caution

● Sometimes Big-O notation can hide large
constant factors

● The fact that Algorithm X is O(n) doesn't matter
if the constant is 10100!

● Something to keep in mind



  

So what is efficient?

● "Efficient" vs. "feasible"

● Everything O(n log n) is generally considered efficient
for all reasonable input sizes

● For small n, any algorithm can be feasible

– Obviously, the slower-growing, the better

– Generally, small polynomials are the limit of feasibility

– Sometimes approximation algorithms can help

● Exponentials are right out



  

Ceiling and Floor Functions

● log n is rarely an integer value

● Often we want to coerce values to be integers
for the sake of analysis

● We can use the floor and ceiling functions to
round real numbers to nearest integers:

–       = floor(x) = largest integer ≤ x

–       = ceil(x) = largest integer ≥ x⌊x ⌋
⌈x ⌉



  

Little-O Notation

● Big-O:

f(n) is O(g(n))     iff.    f(n) ≤ c∙g(n)      for some c, n ≥ n0

● Little-O:

f(n) is o(g(n))     iff.    f(n) ≤ c∙g(n)        for all c, n ≥ n0

● Basically means "f(n) grows much slower than g(n)"

– Alternately, "f(n) is dominated by g(n)"
● Similarly defined for Little-Ω (ω)



  

L'Hôpital's Rule

● This is useful for proving Big-O assertions

● Uses first derivatives f'(n) and g'(n)

lim
n→∞

f (n)
g(n)

= lim
n→∞

f ' (n)
g' (n)

If lim
n→∞

f (n) = lim
n→∞

g (n) = ∞ and f ' (n) and g ' (n) exist, then



  

Key Masteries

● You should be able to:

– Explain why we need asymptotic analysis

– Compare functions and complexity classes
● Especially the members of the eight function families we

talked about

– Explain Big-O notation (O, Ω, Θ)
● Use it to prove relations between complexity classes

– Describe growth rates for concrete algorithms
● Using operation counts and Big-O notation


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

