CS240 Fall 2014

Mike Lam, Professor

FOR FOUR YEARS SHE STUDIED ALGORITHMS.

WHY IS A* SEARCH WRONG IN THIS SITUATION?

HW1 Grades are Posted

- Grades were generally good
- Check my comments!
- Come talk to me if you have any questions

PA1 is Due 9/17 @ noon

- Web-CAT submission will be active soon
- We will provide a few basic "public" tests
- These are not exhaustive!
- You should thoroughly test your own code
- Do not rely on the Web-CAT tests to do your debugging for you

HW2 is Posted, Due 9/19

- Due Sept 19 @ 14:30 (2:30pm)
- Algorithm analysis practice
- Submit a PDF
- LaTeX (.tex template provided)
- Texmaker, Lyx, or ShareLatex.com
- MS Word / LibreOffice w/ equation editor
- Export as PDF!
- Scan of EXTREMELY NEAT handwriting!

Solutions Posted

- New "Files" section on Canvas
- Selected solutions
- Lab 3 (dictionaries)
- Lab 4 (class hierarchy)
- Homework 1 (basic Python)
- DO NOT distribute these outside the class!
- This is an honor code violation

Algorithm Analysis

- Motivation: "what" and "why"
- Mathematical functions
- Comparative \& asymptotic analysis
- Big-O notation (not "Big-Oh"!)

Analyzing algorithms

- We want efficient algorithms
- What metric should we use?
- How should we normalize?
- How should we compare?

Empirical Analysis

- "Run it and see"
- Use the time module in Python
- Vary experiment parameters
- Input size, algorithm used, number of cores, etc.
- Report running times in a graph or table

Problems with Empirical Analysis

- Hard to compare across environments
- Hardware/software differences
- Hard to be comprehensive
- How many experiments do we need to run?
- Did we test all relevant input sizes?
- You actually need the code!
- We have to invest development time

Case Study

- Which is better?

Input Size	Algorithm A	Algorithm B
10	1 s	330 s
20	2 s	430 s
30	3 s	490 s
40	4 s	530 s

Case Study

- Which is better?

Input Size	Algorithm A	Algorithm B
10	1 s	330 s
20	2 s	430 s
30	3 s	490 s
40	4 s	530 s
1,000	100 s	997 s
10,000	$1,000 \mathrm{~s}$	$1,329 \mathrm{~s}$
100,000	$10,000 \mathrm{~s}$	$1,661 \mathrm{~s}$
$1,000,000$	$100,000 \mathrm{~s}$	$1,993 \mathrm{~s}$
	~ 28 hours	~ 33 minutes

Case Study

- Which is better?

Input Size	Algorithm A	Algorithm B
10	1.2 s	1.1 s
100	2.0 s	1.9 s
1,000	3.4 s	3.3 s
10,000	4.5 s	4.7 s
100,000	5.9 s	5.9 s
1,000,000	7.0 s	6.8 s

Case Study

- Which is better?

Input Size	Algorithm A	Algorithm B	Algorithm A	Algorithm B
10	1.2 s	1.1 s	1 MB	1 MB
100	2.0 s	1.9 s	2 MB	11 MB
1,000	3.4 s	3.3 s	3 MB	96 MB
10,000	4.5 s	4.7 s	4 MB	1 GB
100,000	5.9 s	5.9 s	5 MB	12 GB
$1,000,000$	7.0 s	6.8 s	6 MB	140 GB

Case Study

- Which is better?

```
def search(array, item):
    found = False
    for i in array:
        if i == item:
        found = True
    return found
```

```
def search(array, item):
    left = 0
    right = len(array)
    while right > left+1:
    mid \(=(r i g h t-l e f t) / / 2+1 e f t\)
    if array[mid] > item:
        right = mid
        elif array[mid] < item:
        left = mid+1
        else:
        left = mid
        right = mid+1
    return left < len(array) and \(\backslash\)
        array[left] == item
```


Case Study

- Which is better?

```
def search(array, item):
    found = False
    for i in array:
        if i == item:
            found = True
    return found
```

```
def search(array, item):
    found = False
    for i in array:
        if i == item:
        found = True
        break
    return found
```


Case Study

- Which is better?

```
def search(array, item):
    found = False
    for i in array:
        if i == item:
        found = True
    return found
```

```
def search(array, item):
    found = False
    for i in array:
        if i == item:
        found = True
        break
    return found
```

Best: n comparisons
Worst: n comparisons
Average: n comparisons

Case Study

- Which is better?

```
def search(array, item):
    found = False
    for i in array:
        if i == item:
        found = True
    return found
```

```
def search(array, item):
    found = False
    for i in array:
        if i == item:
        found = True
        break
    return found
```

Best: n comparisons
Worst: n comparisons
Average: n comparisons
Best: 1 comparison
Worst: n comparisons
Average: $n / 2$ comparisons

Lessons Learned

- Running times can be deceiving
- We have to normalize by input size
- CPU time isn't the only metric of interest
- Memory usage, I/O time, power usage, etc.
- Focus on "primitive operations" (for simplicity)
- Code length has little bearing on performance
- More complicated code can be faster
- Best, worst, average cases can all be different
- Focus on the worst case (for guarantees)

Analyzing algorithms

- We want efficient algorithms
- What metric should we use?
- How should we normalize?
- How should we compare?

Analyzing algorithms

- We want efficient algorithms
- What metric should we use?
- Worst-case primitive operations
- How should we normalize?
- How should we compare?

Analyzing algorithms

- We want efficient algorithms
- What metric should we use?
- Worst-case primitive operations
- How should we normalize?
- By input size
- How should we compare?

Analyzing algorithms

- We want efficient algorithms
- What metric should we use?
- Worst-case primitive operations
- How should we normalize?
- By input size
- How should we compare?
- Asymptotic analysis

Functions

- First, a brief foray into mathematics...
(don't worry, it will be brief!)

Functions

- Constant function:

$$
\begin{gathered}
f(n)=c \\
O(1)
\end{gathered}
$$

- Input size doesn't matter
- As long as c is relatively small, constant time is as good as it gets!

Functions

- Logarithm function:

$$
\begin{gathered}
f(n)=\log _{b} n \\
\mathrm{O}(\log \mathrm{n})
\end{gathered}
$$

- Grows logarithmically with input size
- Usually the base (b) is 2
- Usually encountered with divide-and-conquer methods

Functions

- Linear function:

$$
\begin{gathered}
f(n)=n \\
O(n)
\end{gathered}
$$

- Grows linearly with input size
- Often, this is the best we can hope for
- Reading objects into memory is $\mathrm{O}(\mathrm{n})$

Functions

- Linearithmic ("quasi-linear") function:

$$
\begin{gathered}
f(n)=n \log _{b} n \\
\mathrm{O}(\mathrm{n} \log \mathrm{n})
\end{gathered}
$$

- Grows slightly faster than linear
- Many important algorithms are O(n log n)
- Most of the "good" sorting algorithms

Functions

- Quadratic function:

$$
\begin{gathered}
f(n)=n^{2} \\
O\left(n^{2}\right)
\end{gathered}
$$

- Scales quadratically with input size
- Usually arises from nested loops

Functions

- Cubic function:

$$
\begin{gathered}
f(n)=n^{3} \\
O\left(n^{3}\right)
\end{gathered}
$$

- Scales cubically with input size
- Usually arises from triply-nested loops

Functions

- Polynomial function:

$$
\begin{gathered}
f(n)=n^{x} \\
O\left(n^{x}\right)
\end{gathered}
$$

- Generalization of quadratic/cubic functions
- We want x to be as small as possible
- Usually, $x>4$ is impractical

Functions

- Exponential function:

$$
\begin{gathered}
f(n)=b^{n} \\
O\left(b^{n}\right)
\end{gathered}
$$

- Usually the base is 2
- Currently infeasible when $n>\sim 100$
- Avoid this!

Functions

- There are worse functions
- Factorial: $f(n)=n!$
- Double exponential: $f(n)=b^{b^{n}}$
- We won't be using these in this class
- But you should know the other eight!

Comparing Functions

- Plotting all functions on one graph is difficult
- Use log-log axes

Comparing Functions

- We now have an ordering of functions:

1. Constant: $f(n)=1$
(slowest-growing)
2. Logarithmic: $f(n)=\log n$
3. Linear: $f(n)=n$
4. Linearithmic: $f(n)=n \log n$
5. Quadratic: $f(n)=n^{2}$
6. Cubic: $\quad f(n)=n^{3}$
7.Polynomial:
$f(n)=n^{b}$
7. Exponential: $\quad f(n)=b^{n}$
(fastest-growing)

Functions

- We have actually described eight function families
- There are a infinite number of functions in each family, with different constant scalar factors
- Example: $n, 3 n$, and $42 n$ are all linear functions
- Example: $n^{2}, 3 n^{2}$, and $42 n^{2}$ are all quadratic
- Within a family, smaller constants are better
- How do we compare between families?
- Use our function ordering!

Comparing Functions

- So we won't talk about the running time of an algorithm ...
- ... but rather we'll talk about how fast the running time grows as the problem size increases ...
- ... and compare the growth rates of various algorithms

Comparing Functions

- This type of analysis is called "asymptotic analysis"
- Because it deals with the behavior of functions in the asymptotic sense as n (input size) increases to infinity

Asymptotic Analysis

- Big-O notation
- Method for mathematically comparing functions
- Provides us with a robust way of saying "this function grows faster than that one"
- We will use that statement as a proxy for: "this algorithm is more efficient than that one"

Big-O Notation

- Formal definition:
- Let $f(n)$ and $g(n)$ be functions
- Mapping input sizes to running time
- We say this:

$$
f(n) \text { is } O(g(n))
$$

- If there is a constant $c>0$ and an integer $\mathrm{n}_{0} \geq 1$ such that:

$$
f(n) \leq c \cdot g(n) \quad \text { for } n \geq n_{0}
$$

Big-O Notation

- Informally, we say " $f(n)$ is $O(g(n))$ " if $f(n)$ grows as slow or slower than $\mathrm{g}(\mathrm{n})$
- According to our ordering of function growth
- Or: "Algorithm X is $O(f(n))$ " if the growth rate of the running time of Algorithm X is $\mathrm{O}(\mathrm{f}(\mathrm{n})$)
- Examples:
- "Linear search is $O(n)$ "
- "Binary search is $O(\log n)$ "
- "Matrix multiplication is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ "

Big-O Notation

- Instead of this:

$$
f(n) \text { is } O(g(n))
$$

- Some people say this:
- This is set notation $f(n) \in O(q(n))$ describing sets or families of functions
- Both are correct; I tend to use the former

Big-O Notation

- Big-O:

$$
\begin{array}{ll}
f(n) \text { is } O(g(n)) \quad \text { iff. } \quad f(n) \leq c \cdot g(n) \quad \text { for } n \geq n_{0} \\
& \text { (upper bound) }
\end{array}
$$

- Big-Omega:

$$
\begin{array}{ll}
f(n) \text { is } \Omega(g(n)) \quad \text { iff. } \quad f(n) \geq c \cdot g(n) \quad \text { for } n \geq n_{0} \\
& \text { (lower bound) }
\end{array}
$$

- Big-Theta:

$$
\begin{gathered}
f(n) \text { is } \Theta(g(n)) \quad \text { iff. } \quad c^{\prime} \cdot g(n) \leq f(n) \leq c^{\prime \prime} \cdot g(n) \quad \text { for } n \geq n_{0} \\
\text { (strict bounds: upper and lower) }
\end{gathered}
$$

Big-O Notation

- Limit-based definitions:
$f(n)$ is $O(g(n))$ if
$f(n)$ is $\Omega(g(n))$ if
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c$
where c is a constant and
c >0
$f(n)$ is $\Theta(g(n))$ if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=c
$$

where c is a constant and c $<\infty$
where c is a constant and
$0<c<\infty$

Big-O Notation

- We now have a strict ordering of complexity classes:

1. Constant: $\Theta(1)$
(slowest-growing)
2. Logarithmic: $\Theta(\log n)$
3. Linear: $\Theta(n)$
4. Linearithmic: $\Theta(n \log n)$
5. Quadratic: $\Theta\left(n^{2}\right)$
6. Cubic: $\Theta\left(n^{3}\right)$
7. Polynomial: $\quad \Theta\left(n^{b}\right)$
8. Exponential: $\Theta\left(b^{n}\right)$

Big-O Notation

- Find the slowest-growing function family for which the Big-O definition is true
- Example: Don't say Algorithm X is $O\left(n^{3}\right)$ if it is $O\left(n^{2}\right)$ even though the former is technically true as well
- Walking traveler example
- Drop slower-growing ("lower-order") terms
- Example: Don't say Algorithm X is $O(n+\log n)$
- Drop the slower-growing function and say it is $\mathrm{O}(\mathrm{n})$
- Goldfish/elephant example

A Word of Caution

- Sometimes Big-O notation can hide large constant factors
- The fact that Algorithm X is $O(n)$ doesn't matter if the constant is 10^{100} !
- Something to keep in mind

So what is efficient?

- "Efficient" vs. "feasible"
- Everything $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ is generally considered efficient for all reasonable input sizes
- For small n, any algorithm can be feasible
- Obviously, the slower-growing, the better
- Generally, small polynomials are the limit of feasibility
- Sometimes approximation algorithms can help
- Exponentials are right out

Ceiling and Floor Functions

- $\log n$ is rarely an integer value
- Often we want to coerce values to be integers for the sake of analysis
- We can use the floor and ceiling functions to round real numbers to nearest integers:
- $\quad=$ floor (x) = largest integer $\leq x$
$-\lfloor x\rfloor=\operatorname{ceil}(x)=$ largest integer $\geq x$
$\lceil x\rceil$

Little-O Notation

- Big-O:

$$
f(n) \text { is } O(g(n)) \quad \text { iff. } \quad f(n) \leq c \cdot g(n) \quad \text { for some } c, n \geq n_{0}
$$

- Little-O:

$$
f(n) \text { is } o(g(n)) \quad \text { iff. } \quad f(n) \leq c \cdot g(n) \quad \text { for all } c, n \geq n_{0}
$$

- Basically means "f(n) grows much slower than $g(n)$ "
- Alternately, " $\mathrm{f}(\mathrm{n})$ is dominated by $\mathrm{g}(\mathrm{n})$ "
- Similarly defined for Little- $\Omega(\omega)$

L'Hôpital's Rule

If $\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} g(n)=\infty$ and $f^{\prime}(n)$ and $g^{\prime}(n)$ exist, then $n \rightarrow \infty \quad n \rightarrow \infty$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

- This is useful for proving Big-O assertions
- Uses first derivatives $f^{\prime}(n)$ and $g^{\prime}(n)$

Key Masteries

- You should be able to:
- Explain why we need asymptotic analysis
- Compare functions and complexity classes
- Especially the members of the eight function families we talked about
- Explain Big-O notation (O, Ω, Θ)
- Use it to prove relations between complexity classes
- Describe growth rates for concrete algorithms
- Using operation counts and Big-O notation

