

CS 240
Fall 2014

Mike Lam, Professor

Object-Oriented Python

Today

● Documentation tips
● Python objects
● Python inheritance
● Python type system

Code Documentation

● Avoid one-letter names ("a", "b", etc.)
– Exception: loop indices (but match type: “i” vs. “ch”)

● Short but descriptive names
– If it's not a list, don't call it “name_list”

● Check for duplicate in-scope variables
– Nested loops, conditional bodies

Code Documentation

● In-line comments
– Explain tricky code
– Don't just echo the code
– If you forget what it's doing after 48 hours, you won't

understand it six months later
● Docstrings

– String literal that appears as the first (indented)
statement in a module, class, or function

– Uses """ delimiters by convention

Why Objects?

Why Objects?

● Reusability
– Don't re-invent the wheel

● Modularity
– Easier to manage and test

● Abstraction
– Cleaner designs

Object Components

Object Components

● Fields
– Member variables
– Public vs. private (convention-only in Python)

● obj.x vs. obj._x

● Behaviors
– Member methods/functions
– Explicit "self" in Python

UML

● Unified Modeling Language

ClassA

+ id : int
- secret : string

+ print_secret()

ClassB

+ id : int
- secret : string
- password : string

+ print_secret()

superclass (parent) member variables

class title

member functions

subclass (child) id, secret, and
print_secret are
"inherited" from
ClassA

subclass relationship ("is a")

Python Classes
class Polygon():
 """ Represents an n-sided Polygon in a 2d plane """

 def __init__(self, x, y, sides, size):
 self._x = x
 self._y = y
 self._sides = sides
 self._size = size

 def __str__(self):
 return str(self._x) + ", " + str(self._y)

 def __eq__(self, rhs):
 return (self._x == rhs._x and self._y == rhs._y)

tri = Polygon(0, 0, 3, 10)
penta = Polygon(5, 5, 5, 10)
hexa = Polygon(5, 5, 6, 15)

print(str(tri)) # same as print(tri.__str__())

print(penta == hexa)

Python Classes

● All methods take "self" parameter

– x.foo() means Class.foo(x)

● __init__ is the constructor

● __str__ is called when the user says str(x)

● __eq__ is called when the user says x == y

– "is" is different (reference vs. value equality)

● All members are public

– Convention: use "_" prefix to mark private members

Python Inheritance
class Polygon():
 def __init__(self, x, y, sides, size):
 self.x = x
 self.y = y
 self.sides = sides
 self.size = size

 def __str__(self):
 return str(self._x) + ", " + str(self._y)

class Square(Polygon):
 def __init__(self, x, y, size):
 super().__init__(x, y, 4, size)

sq = Square(5, 10, 50)
print(str(sq)) # Square inherits __str__()
 # from Polygon

Python Typing

● Python is dynamically typed
– No types explicitly declared in code
– All variables are references

● All values are objects

– Objects do have a type at runtime!
● Assigned during initialization (“=” operator)
● Call type(x) to see x's type

– Python uses “dynamic dispatch”
● Interpreter checks for members at run time

“Duck” Typing

● "If it walks like a duck and talks like a duck...
– … treat it like a duck."

Multiple Inheritance

● Python allows multiple inheritance
● "Diamond problem"

– C3 algorithm for method resolution

● We won't use multiple inheritance in this class

Abstract Base Classes

● Non-instantiable parent class

● Marks methods that all subclasses (children) should implement

● In Python, use the abc module:

from abc import ABCMeta, abstractmethod

class MyClass(metaclass=ABCMeta):

 @abstractmethod
 def do_something(): # subclasses
 pass # must implement

my_obj = MyClass() # TypeError!

Python Classes

● Example

Reminders

● Homework 1 due on Friday @ 14:30 (2:30 pm)
– Submit on Canvas

● PA1 posted
– Due September 17 @ 12:00 (noon)

● Lab on Friday
– Shape hierarchy
– Time to work on previous labs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

