
will be needed and committed. In this paper, we refer
to speculative execution in a more restricted meaning,
where it refers to an instruction sequence following a
branch, and use the term out-of-order execution to refer
to any way of getting an operation executed before the
processor has committed the results of all prior instruc-
tions.

In 1967, Tomasulo [33] developed an algorithm [33]
that enabled dynamic scheduling of instructions to al-
low out-of-order execution. Tomasulo [33] introduced
a unified reservation station that allows a CPU to use
a data value as it has been computed instead of storing
it to a register and re-reading it. The reservation sta-
tion renames registers to allow instructions that operate
on the same physical registers to use the last logical one
to solve read-after-write (RAW), write-after-read (WAR)
and write-after-write (WAW) hazards. Furthermore, the
reservation unit connects all execution units via a com-
mon data bus (CDB). If an operand is not available, the
reservation unit can listen on the CDB until it is available
and then directly begin the execution of the instruction.

On the Intel architecture, the pipeline consists of the
front-end, the execution engine (back-end) and the mem-
ory subsystem [14]. x86 instructions are fetched by
the front-end from the memory and decoded to micro-
operations (µOPs) which are continuously sent to the ex-
ecution engine. Out-of-order execution is implemented
within the execution engine as illustrated in Figure 1.
The Reorder Buffer is responsible for register allocation,
register renaming and retiring. Additionally, other opti-
mizations like move elimination or the recognition of ze-
roing idioms are directly handled by the reorder buffer.
The µOPs are forwarded to the Unified Reservation Sta-

tion that queues the operations on exit ports that are con-
nected to Execution Units. Each execution unit can per-
form different tasks like ALU operations, AES opera-
tions, address generation units (AGU) or memory loads
and stores. AGUs as well as load and store execution
units are directly connected to the memory subsystem to
process its requests.

Since CPUs usually do not run linear instruction
streams, they have branch prediction units that are used
to obtain an educated guess of which instruction will be
executed next. Branch predictors try to determine which
direction of a branch will be taken before its condition
is actually evaluated. Instructions that lie on that path
and do not have any dependencies can be executed in ad-
vance and their results immediately used if the prediction
was correct. If the prediction was incorrect, the reorder
buffer allows to rollback by clearing the reorder buffer
and re-initializing the unified reservation station.

Various approaches to predict the branch exist: With
static branch prediction [12], the outcome of the branch
is solely based on the instruction itself. Dynamic branch

E
x
ec

u
ti

o
n

E
n

g
in

e

Reorder buffer

µOP µOP µOP µOP µOP µOP µOP µOP

Scheduler

Execution Units

A
L

U
,

A
E

S
,

..
.

A
L

U
,

F
M

A
,

..
.

A
L

U
,

V
ec

t,
..

.

A
L

U
,

B
ra

n
ch

L
o

ad
d

at
a

L
o

ad
d

at
a

S
to

re
d

at
a

A
G

U
µOP µOP µOP µOP µOP µOP µOP µOP

CDB

M
em

o
ry

S
u
b
sy

st
em

Load Buffer Store Buffer

L1 Data Cache
DTLB STLB

L2 Cache

F
ro

n
te

n
d

Allocation Queue

µOP µOP µOP µOP

MUX

4-Way Decode

µOP µOP µOP µOP

Instruction Queue

Instruction Fetch & PreDecode

µOP Cache

µOPs

Branch
Predictor

L1 Instruction Cache
ITLB

Figure 1: Simplified illustration of a single core of the In-
tel’s Skylake microarchitecture. Instructions are decoded
into µOPs and executed out-of-order in the execution en-
gine by individual execution units.

prediction [2] gathers statistics at run-time to predict the
outcome. One-level branch prediction uses a 1-bit or 2-
bit counter to record the last outcome of the branch [21].
Modern processors often use two-level adaptive predic-
tors [36] that remember the history of the last n outcomes
allow to predict regularly recurring patterns. More re-
cently, ideas to use neural branch prediction [34, 18, 32]
have been picked up and integrated into CPU architec-
tures [3].

2.2 Address Spaces

To isolate processes from each other, CPUs support vir-
tual address spaces where virtual addresses are translated
to physical addresses. A virtual address space is divided
into a set of pages that can be individually mapped to
physical memory through a multi-level page translation
table. The translation tables define the actual virtual
to physical mapping and also protection properties that
are used to enforce privilege checks, such as readable,

3


