
1 ; rcx = kernel address
2 ; rbx = probe array
3 retry:
4 mov al, byte [rcx]
5 shl rax, 0xc
6 jz retry
7 mov rbx, qword [rbx + rax]

Listing 2: The core instruction sequence of Meltdown.
An inaccessible kernel address is moved to a register,
raising an exception. The subsequent instructions are
already executed out of order before the exception is
raised, leaking the content of the kernel address through
the indirect memory access.

chine. Further, we assume that the system is fully pro-
tected with state-of-the-art software-based defenses such
as ASLR and KASLR as well as CPU features like
SMAP, SMEP, NX, and PXN. Most importantly, we as-
sume a completely bug-free operating system, thus, no
software vulnerability exists that can be exploited to gain
kernel privileges or leak information. The attacker tar-
gets secret user data, e.g., passwords and private keys, or
any other valuable information.

5.1 Attack Description

Meltdown combines the two building blocks discussed
in Section 4. First, an attacker makes the CPU execute
a transient instruction sequence which uses an inacces-
sible secret value stored somewhere in physical memory
(cf. Section 4.1). The transient instruction sequence acts
as the transmitter of a covert channel (cf. Section 4.2),
ultimately leaking the secret value to the attacker.

Meltdown consists of 3 steps:

Step 1 The content of an attacker-chosen memory loca-
tion, which is inaccessible to the attacker, is loaded
into a register.

Step 2 A transient instruction accesses a cache line
based on the secret content of the register.

Step 3 The attacker uses Flush+Reload to determine the
accessed cache line and hence the secret stored at the
chosen memory location.

By repeating these steps for different memory locations,
the attacker can dump the kernel memory, including the
entire physical memory.

Listing 2 shows the basic implementation of the tran-
sient instruction sequence and the sending part of the
covert channel, using x86 assembly instructions. Note
that this part of the attack could also be implemented en-
tirely in higher level languages like C. In the following,
we will discuss each step of Meltdown and the corre-
sponding code line in Listing 2.

Step 1: Reading the secret. To load data from the
main memory into a register, the data in the main mem-
ory is referenced using a virtual address. In parallel to
translating a virtual address into a physical address, the
CPU also checks the permission bits of the virtual ad-
dress, i.e., whether this virtual address is user accessible
or only accessible by the kernel. As already discussed in
Section 2.2, this hardware-based isolation through a per-
mission bit is considered secure and recommended by the
hardware vendors. Hence, modern operating systems al-
ways map the entire kernel into the virtual address space
of every user process.

As a consequence, all kernel addresses lead to a valid
physical address when translating them, and the CPU can
access the content of such addresses. The only differ-
ence to accessing a user space address is that the CPU
raises an exception as the current permission level does
not allow to access such an address. Hence, the user
space cannot simply read the contents of such an address.
However, Meltdown exploits the out-of-order execution
of modern CPUs, which still executes instructions in the
small time window between the illegal memory access
and the raising of the exception.

In line 4 of Listing 2, we load the byte value located
at the target kernel address, stored in the RCX register,
into the least significant byte of the RAX register repre-
sented by AL. As explained in more detail in Section 2.1,
the MOV instruction is fetched by the core, decoded into
µOPs, allocated, and sent to the reorder buffer. There, ar-
chitectural registers (e.g., RAX and RCX in Listing 2) are
mapped to underlying physical registers enabling out-of-
order execution. Trying to utilize the pipeline as much as
possible, subsequent instructions (lines 5-7) are already
decoded and allocated as µOPs as well. The µOPs are
further sent to the reservation station holding the µOPs
while they wait to be executed by the corresponding ex-
ecution unit. The execution of a µOP can be delayed if
execution units are already used to their corresponding
capacity or operand values have not been calculated yet.

When the kernel address is loaded in line 4, it is likely
that the CPU already issued the subsequent instructions
as part of the out-or-order execution, and that their cor-
responding µOPs wait in the reservation station for the
content of the kernel address to arrive. As soon as the
fetched data is observed on the common data bus, the
µOPs can begin their execution.

When the µOPs finish their execution, they retire in-
order, and, thus, their results are committed to the archi-
tectural state. During the retirement, any interrupts and
exception that occurred during the execution of the in-
struction are handled. Thus, if the MOV instruction that
loads the kernel address is retired, the exception is reg-
istered and the pipeline is flushed to eliminate all results
of subsequent instructions which were executed out of

8


