
Physical memory

0 max

User

0 247

Kernel

−247 −1

Figure 2: The physical memory is directly mapped in the
kernel at a certain offset. A physical address (blue) which
is mapped accessible for the user space is also mapped in
the kernel space through the direct mapping.

writable, executable and user-accessible. The currently
used translation table that is held in a special CPU reg-
ister. On each context switch, the operating system up-
dates this register with the next process’ translation table
address in order to implement per process virtual address
spaces. Because of that, each process can only reference
data that belongs to its own virtual address space. Each
virtual address space itself is split into a user and a kernel
part. While the user address space can be accessed by the
running application, the kernel address space can only be
accessed if the CPU is running in privileged mode. This
is enforced by the operating system disabling the user-
accessible property of the corresponding translation ta-
bles. The kernel address space does not only have mem-
ory mapped for the kernel’s own usage, but it also needs
to perform operations on user pages, e.g., filling them
with data. Consequently, the entire physical memory is
typically mapped in the kernel. On Linux and OS X, this
is done via a direct-physical map, i.e., the entire physi-
cal memory is directly mapped to a pre-defined virtual
address (cf. Figure 2).

Instead of a direct-physical map, Windows maintains
a multiple so-called paged pools, non-paged pools, and
the system cache. These pools are virtual memory re-
gions in the kernel address space mapping physical pages
to virtual addresses which are either required to remain
in the memory (non-paged pool) or can be removed from
the memory because a copy is already stored on the disk
(paged pool). The system cache further contains map-
pings of all file-backed pages. Combined, these memory
pools will typically map a large fraction of the physical
memory into the kernel address space of every process.

The exploitation of memory corruption bugs often re-
quires the knowledge of addresses of specific data. In
order to impede such attacks, address space layout ran-
domization (ASLR) has been introduced as well as non-
executable stacks and stack canaries. In order to protect
the kernel, KASLR randomizes the offsets where drivers
are located on every boot, making attacks harder as they
now require to guess the location of kernel data struc-
tures. However, side-channel attacks allow to detect the

exact location of kernel data structures [9, 13, 17] or de-
randomize ASLR in JavaScript [6]. A combination of a
software bug and the knowledge of these addresses can
lead to privileged code execution.

2.3 Cache Attacks

In order to speed-up memory accesses and address trans-
lation, the CPU contains small memory buffers, called
caches, that store frequently used data. CPU caches hide
slow memory access latencies by buffering frequently
used data in smaller and faster internal memory. Mod-
ern CPUs have multiple levels of caches that are either
private to its cores or shared among them. Address space
translation tables are also stored in memory and are also
cached in the regular caches.

Cache side-channel attacks exploit timing differences
that are introduced by the caches. Different cache attack
techniques have been proposed and demonstrated in the
past, including Evict+Time [28], Prime+Probe [28, 29],
and Flush+Reload [35]. Flush+Reload attacks work on
a single cache line granularity. These attacks exploit the
shared, inclusive last-level cache. An attacker frequently
flushes a targeted memory location using the clflush

instruction. By measuring the time it takes to reload the
data, the attacker determines whether data was loaded
into the cache by another process in the meantime. The
Flush+Reload attack has been used for attacks on various
computations, e.g., cryptographic algorithms [35, 16, 1],
web server function calls [37], user input [11, 23, 31],
and kernel addressing information [9].

A special use case are covert channels. Here the at-
tacker controls both, the part that induces the side effect,
and the part that measures the side effect. This can be
used to leak information from one security domain to an-
other, while bypassing any boundaries existing on the ar-
chitectural level or above. Both Prime+Probe and Flush+
Reload have been used in high-performance covert chan-
nels [24, 26, 10].

3 A Toy Example

In this section, we start with a toy example, a simple
code snippet, to illustrate that out-of-order execution can
change the microarchitectural state in a way that leaks
information. However, despite its simplicity, it is used as
a basis for Section 4 and Section 5, where we show how
this change in state can be exploited for an attack.

Listing 1 shows a simple code snippet first raising an
(unhandled) exception and then accessing an array. The
property of an exception is that the control flow does not
continue with the code after the exception, but jumps to
an exception handler in the operating system. Regardless

4


