
1 raise_exception();
2 // the line below is never reached
3 access(probe_array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr.>

<instr.>
...

<instr.>

[Exception]

E
X

E
C

U
T

E
D

E
X

E
C

U
T

E
D

O
U

T
O

F

O
R

D
E

R

<instr.>

<instr.>

<instr.>

EXCEPTION

HANDLER

<instr.>

<instr.>

[Terminate]

Figure 3: If an executed instruction causes an exception,
diverting the control flow to an exception handler, the
subsequent instruction must not be executed anymore.
Due to out-of-order execution, the subsequent instruc-
tions may already have been partially executed, but not
retired. However, the architectural effects of the execu-
tion will be discarded.

of whether this exception is raised due to a memory ac-
cess, e.g., by accessing an invalid address, or due to any
other CPU exception, e.g., a division by zero, the control
flow continues in the kernel and not with the next user
space instruction.

Thus, our toy example cannot access the array in the-
ory, as the exception immediately traps to the kernel and
terminates the application. However, due to the out-of-
order execution, the CPU might have already executed
the following instructions as there is no dependency on
the exception. This is illustrated in Figure 3. Due to the
exception, the instructions executed out of order are not
retired and, thus, never have architectural effects.

Although the instructions executed out of order do not
have any visible architectural effect on registers or mem-
ory, they have microarchitectural side effects. During the
out-of-order execution, the referenced memory is fetched
into a register and is also stored in the cache. If the out-
of-order execution has to be discarded, the register and
memory contents are never committed. Nevertheless, the
cached memory contents are kept in the cache. We can
leverage a microarchitectural side-channel attack such
as Flush+Reload [35], which detects whether a specific
memory location is cached, to make this microarchitec-
tural state visible. There are other side channels as well
which also detect whether a specific memory location
is cached, including Prime+Probe [28, 24, 26], Evict+
Reload [23], or Flush+Flush [10]. However, as Flush+
Reload is the most accurate known cache side channel

0 50 100 150 200 250
200

300

400

500

Page

A
cc

es
s

ti
m

e
[c

y
cl

es
]

Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

and is simple to implement, we do not consider any other
side channel for this example.

Based on the value of data in this toy example, a dif-
ferent part of the cache is accessed when executing the
memory access out of order. As data is multiplied by
4096, data accesses to probe array are scattered over
the array with a distance of 4 kB (assuming an 1 B data
type for probe array). Thus, there is an injective map-
ping from the value of data to a memory page, i.e., there
are no two different values of data which result in an ac-
cess to the same page. Consequently, if a cache line of a
page is cached, we know the value of data. The spread-
ing over different pages eliminates false positives due to
the prefetcher, as the prefetcher cannot access data across
page boundaries [14].

Figure 4 shows the result of a Flush+Reload measure-
ment iterating over all pages, after executing the out-of-
order snippet with data = 84. Although the array ac-
cess should not have happened due to the exception, we
can clearly see that the index which would have been ac-
cessed is cached. Iterating over all pages (e.g., in the
exception handler) shows only a cache hit for page 84
This shows that even instructions which are never actu-
ally executed, change the microarchitectural state of the
CPU. Section 4 modifies this toy example to not read a
value, but to leak an inaccessible secret.

4 Building Blocks of the Attack

The toy example in Section 3 illustrated that side-effects
of out-of-order execution can modify the microarchitec-
tural state to leak information. While the code snippet
reveals the data value passed to a cache-side channel, we
want to show how this technique can be leveraged to leak
otherwise inaccessible secrets. In this section, we want
to generalize and discuss the necessary building blocks
to exploit out-of-order execution for an attack.

The adversary targets a secret value that is kept some-
where in physical memory. Note that register contents
are also stored in memory upon context switches, i.e.,

5

