

CS240 Fundamentals

Complete the following problems without a calculator.

1. Functions

Given this function: $T(n) = 5 + n^2$

(a) What are the values of:

$$T(0) = \underline{\hspace{2cm}} \quad T(1) = \underline{\hspace{2cm}} \quad T(2) = \underline{\hspace{2cm}}$$

(b) Consider an arbitrary value c :

$$T(c) = \underline{\hspace{2cm}} \quad T(c+1) = \underline{\hspace{2cm}}$$

2. Algebra

(a) Simplify the following ($T(n)$ from the question above):

$$\frac{n^2 + 3n}{n^2} = \underline{\hspace{2cm}} \quad \frac{T(n)}{n} = \underline{\hspace{2cm}}$$

(b) Solve the inequalities:

$$x + 5 < 8 \text{ is true when: } \underline{\hspace{2cm}}$$

$$x^2 - 4 \geq 0 \text{ is true when: } \underline{\hspace{2cm}}$$

3. Powers of 2

(a) Write the powers of 2 from 2^0 to 2^{10} . The first three have been completed for you.

2^0	2^1	2^2	2^3	2^4	2^5	2^6	2^7	2^8	2^9	2^{10}
1	2	4								

(b) Solve:

$$\log_2 8 = \underline{\hspace{2cm}} \quad \log_2 512 = \underline{\hspace{2cm}} \quad \log_2 2^{100} = \underline{\hspace{2cm}}$$

(c) Solve:

$$2^{\log_2 1701} = \underline{\hspace{2cm}} \quad 2^{\log_2 x} = \underline{\hspace{2cm}}$$

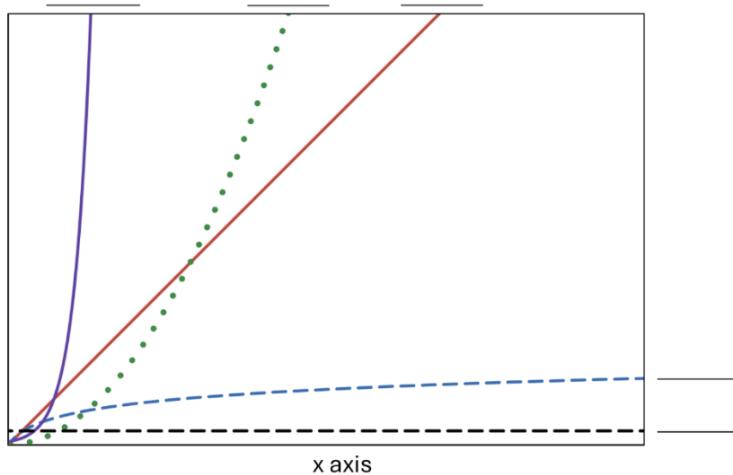
4. Summations

(a) Consider the summation $T(n) = \sum_{i=0}^n 5$.

i. Determine the value of $T(6)$ by writing out all terms in the sum.

ii. Give a closed form solution for $T(n)$.

(b) Consider the summation $T(n) = \sum_{i=0}^{\lfloor \log_2(n) \rfloor} 2^i + 3$.


Notation reminder: The floor operator $\lfloor x \rfloor$ takes a real number and returns the largest integer that is less than or equal to that number. Essentially, it rounds down. Similarly, the ceiling operator $\lceil x \rceil$ rounds up.

i. Determine the value of $T(14)$ by writing out all terms in the sum.

5. Graphs

Fill in the blanks to match each function to the line that best represents its growth (graph not to scale).

Possible functions: $A(x) = x$, $B(x) = \log_2 x$, $C(x) = x^2$, $D(x) = 4$, $E(x) = 2^x$.

6. Code Tracing and Counting

```
public static void printAs(int n) {
    for (int i = 0; i < n; i++) {
        System.out.print("A");
        System.out.print("A");
    }
}
```

(a) For $\text{printAs}(5)$, how many A's get printed? _____

(b) Let $A(n)$ be the number of A's printed:

$A(1) =$ _____, $A(2) =$ _____, $A(3) =$ _____, $A(4) =$ _____

(c) Generalize:

$A(n) =$ _____

7. More Counting

```
public static void printBs(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            System.out.print("B");
        }
    }
}
```

(a) For `printBs(2)`, how many B's get printed? _____

(b) Generalize:

$B(n) =$ _____

8. Even More Counting

```
public static void printCs(int n) {
    System.out.print("C");

    for (int i = 0; i < n; i++) {
        System.out.print("C");
    }
}
```

Write a function representing the number of C's printed:

$C(n) =$ _____

9. ADT Selection

For each scenario, choose the most appropriate Abstract Data Type / Java collection interface from **List, Set, Map, Queue**.

Scenario	Answer (List / Set / Map / Queue)
Keep a reading history in the order items were added; sometimes access by position.	
Look up a product's details given its SKU code.	
Record which users have completed onboarding; ignore repeats from the same user.	

10. Collection Hierarchy

Which of the following will compile? For each snippet, check one. If it does not compile, briefly explain the problem.

Check your answers using `jshell` on your laptop, or use a web-based `jshell` if that isn't working for you: <https://tryjshell.org/>

(a)

```
List<Integer> lst = new ArrayList<>();
```

Compiles Does not compile

(b)

```
Queue<Integer> q = new LinkedList<>();
```

Compiles Does not compile

(c)

```
Iterable<Integer> itbl = new ArrayList<>();
```

Compiles Does not compile

(d)

```
Iterable<Integer> itbl = new ArrayList<>();
itbl.add(7);
```

Compiles Does not compile

(e)

```
Collection<Integer> coll = new ArrayList<>();
coll.add(5);
coll.add(6);
coll.get(1); // item at position 2
```

Compiles Does not compile

(f)

```
// Integer is a subclass of Number.
List<Number> nums = new ArrayList<Integer>();
```

Compiles Does not compile

(g)

```
Collection<String> map = new HashMap<>();
```

Compiles Does not compile

11. Iterators

For each independent snippet below, write exactly what is printed. Also, indicate any exceptions that are thrown and the line where they occur.

(a)

```
1 List<String> s = Arrays.asList("A", "B");
2 Iterator<String> it = s.iterator();
3
4 System.out.print(it.next());
5 System.out.print(it.next());
6 System.out.print(it.next());
```

(b)

```
1 List<Integer> nums = Arrays.asList(1, 2, 3);
2 Iterator<Integer> it = nums.iterator();
3
4 it.next();
5 it.next();
6 it.remove();
7 System.out.println(it.hasNext());
8 System.out.println(nums);
```

(c)

```
1 List<String> list = new ArrayList<>(Arrays.asList("X", "Y"));
2 Iterator<String> it = list.iterator();
3
4 while (it.hasNext()) {
5     System.out.print(it.next());
6     it.remove();
7 }
8 System.out.println(list.size());
9 it.remove();
```

(d)

```
1 List<String> list = new ArrayList<>(List.of("A", "B", "C"));
2 Iterator<String> it = list.iterator();
3
4 for (String s : list) {
5     System.out.print(s);
6     System.out.print(it.next());
7 }
```

12. (IF TIME) Final Code Tracing and Counting

```
public static void printDs(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = i; j < n; j++) { // Notice loop initialization!
            System.out.print("D");
        }
    }
}
```

(a) For `printDs(2)`, how many D's get printed? _____

(b) Let $D(n)$ be the number of D's printed:
 $D(1) = \underline{\hspace{2cm}}$, $D(2) = \underline{\hspace{2cm}}$, $D(3) = \underline{\hspace{2cm}}$, $D(4) = \underline{\hspace{2cm}}$

(c) Generalize:
 $D(n) = \underline{\hspace{2cm}}$