
Recursive Drawings
A recursive method is one that calls itself, usually with an increasing or decreasing argument.
In this activity, you will trace the execution of recursive methods that draw 2D graphics.

Manager: Recorder:

Presenter: Reflector:

Content Learning Objectives

After completing this activity, students should be able to:

• Use the Java 2D API to draw a repeating pattern on shapes.

• Explain how base cases and recursive calls affect execution.

• Identify similarities and differences in recursive methods.

Process Skill Goals

During the activity, students should make progress toward:

• Tracing the flow of execution using print statements. (Information Processing)

Copyright © 2024 Chris Mayfield. This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Model 1 Drawing and Tracing

Open Drawing.java and run the program. Keep an eye on both the Drawing window and the
Console output. Notice the order in which the shapes are drawn. Run the program again, as
needed, so that all team members can see its behavior. Then answer the questions below to
explore and discuss the source code as a team.

Drawing (cropped) Console output

diamond(300, 200)

triangle(400, 400)

diamond(500, 200)

Questions (15 min) Start time:

1. Fill in each blank with IS-A, HAS-A, or USES-A:

a) Drawing Canvas

b) Drawing Graphics2D

c) Drawing Color

d) Drawing JFrame

2. Based on the Drawing() constructor:

a) What is the Canvas width?

b) What is the Canvas height?

c) What is the JFrame title?

d) What is “in” the JFrame?
Hint: see Line 30.

3. Summarize in your own words what each method does:

a) paint(Graphics g)

b) draw()

4. What is the purpose of the g2 attribute? (i.e., How is it used in the program?)

5. Consider the “Console output” (from Model 1) and the trace() method:

a) Why is the “triangle” line indented?

b) Why are the “diamond” lines not indented?

c) How long is the delay after drawing each shape?

6. Modify the draw() method to draw and trace many diamonds and triangles. Use for loops
to put each shape at a different (x, y) location. Reduce the DELAY so you can see the final result.
Summarize your source code below:

Model 2 The “Vee” Tree

Open VeeTree.java and run the program. Adjust the DELAY in Drawing.java, as needed, to notice
the order. Then answer the questions below to explore and discuss the source code as a team.

Drawing (cropped) Console output

Starting vee(400, 350)

diamond(250, 275)

triangle(550, 275)

Finished vee(400, 350)

Questions (15 min) Start time:

7. The vee() method uses g2 to draw strings and lines. Where is this variable declared?

8. Review the Javadoc comment for the vee() method. In terms of the variables x, y, left,
right, and top, what are the following coordinates?

a) The bottom of the “Vee”: (,)

b) The diamond on the left: (,)

c) The triangle on the right: (,)

9. Add the following line at the end of the left branch, after the trace for diamond. What
happens when you run the program now? Explain both the drawing and the Console output.

vee(level + 1, left, top);

10. Add the following code at the beginning of the method, right after the first trace. What
happens when you run the program now? Explain both the drawing and the Console output.

if (level == 3) {

trace(level, "Aborting vee(%d, %d)", x, y);

return;

}

11. Based on the most recent Console output:

a) How many times was vee() called?

b) How many times did vee() return?

c) How many diamonds were drawn?

d) How many triangles were drawn?

12. Add the following line at the end of the right branch, after the trace for triangle. What
happens when you run the program now? Explain both the drawing and the Console output.

vee(level + 1, right, top);

Model 3 Sierpiński Triangle

Open Triangles.java and run the program. Then change LEVELS to 1 and run the program again.
Observe other LEVELS from 2 to 5. Adjust the DELAY in Drawing.java, as needed, to see the full
drawing. Then answer the questions below to explore and discuss the source code as a team.

Drawing (cropped) Console output

Starting tri (88, 570), (400, 30), (712, 570)

Starting tri (88, 570), (244, 300), (400, 570)

Finished tri (88, 570), (244, 300), (400, 570)

Starting tri (244, 300), (400, 30), (556, 300)

Finished tri (244, 300), (400, 30), (556, 300)

Starting tri (400, 570), (556, 300), (712, 570)

Finished tri (400, 570), (556, 300), (712, 570)

Finished tri (88, 570), (400, 30), (712, 570)

Questions (15 min) Start time:

13. How many times is the tri() method called. . .

a) in the source code ?

b) when LEVELS = 0 ?

c) when LEVELS = 1 ?

d) when LEVELS = 2 ?

14. Consider the vertices in the drawing above (when LEVELS == 1). Using the boxes below,
indicate the location of p1, p2, p3, p4, p5, and p6. Hint: see Lines 46–48 and 68–70 of the code.

15. When the tri() method calls itself, what value does it pass for level?

16. What prevents the recursive process from continuing forever?

17. When starting the drawing with higher LEVELS, what do the blue outlines represent?

18. Compare the VeeTree program from Model 2 with Triangles. In terms of recursion, what
do they do in common? How are they different?

	Drawing and Tracing
	The ``Vee'' Tree
	Sierpinski Triangle

