
Abstract Classes
When multiple variations of the same class are necessary, abstraction and generalization are
powerful techniques for eliminating duplicate code.

Manager: Recorder:

Presenter: Reflector:

Content Learning Objectives

After completing this activity, students should be able to:

• Generalize multiple classes that have overlapping code.

• Explain the requirements of abstract classes and methods.

• Discuss how polymorphism can be done using interfaces.

Process Skill Goals

During the activity, students should make progress toward:

• Analyze compiler error messages to reach a conclusion. (Critical Thinking)

Copyright © 2024 Chris Mayfield and Nathan Sprague. This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Model 1 Loud Toys

public class ToySheep {

private int volume;

public ToySheep() {

this.volume = 3;

}

public int getVolume() {

return volume;

}

public void setVolume(int volume) {

this.volume = volume;

makeNoise();

}

public void makeNoise() {

System.out.println("Baaa");

}

}

public class ToyRobot {

private int chargeLevel;

private int volume;

public ToyRobot() {

this.chargeLevel = 5;

this.volume = 10;

}

public void recharge() {

chargeLevel = 10;

}

public int getVolume() {

return volume;

}

public void setVolume(int volume) {

this.volume = volume;

makeNoise();

}

public void makeNoise() {

System.out.println("Beep Beep!");

}

}

Questions (15 min) Start time:

1. Identify similarities in the code:

a) What attributes do the classes have in common?

b) What methods do the classes have in common?

2. Summarize differences between the constructors and the makeNoise methods.



3. Design a new class named LoudToy that contains the code that ToySheep and ToyRobots have
in common. The constructor of LoudToy should take volume as a parameter. The makeNoise

method should have an empty body. Summarize your changes below:

public class LoudToy {

}

4. Redesign ToySheep so that it extends LoudToy. The constructor of ToySheep should call the
constructor of LoudToy. Remove the code from ToySheep that is no longer necessary. Summarize
your changes below:

public class ToySheep extends LoudToy {

}



5. Redesign ToyRobot so that it extends LoudToy. The constructor of ToyRobot should call the
constructor of LoudToy. Remove the code from ToyRobot that is no longer necessary. Summarize
your changes below:

public class ToyRobot extends LoudToy {

}

6. Predict the output of the following examples:

a) LoudToy toy1 = new LoudToy(1);

toy1.setVolume(5);

b) LoudToy toy2 = new ToySheep();

toy2.setVolume(5);

c) LoudToy toy3 = new ToyRobot();

toy3.setVolume(5);

7. In the previous question, did the variable’s type or the object’s type determine the version
of makeNoise that was called during setVolume?

8. In LoudToy, what is the reason for defining makeNoise? (Hint: Try removing that method.)



Model 2 Abstract Methods

The abstract keyword can be used to declare methods that have no body. Classes with abstract
methods must also be defined as abstract. Consider this new version of LoudToy:

public abstract class LoudToy {

private int volume;

public LoudToy(int volume) {

this.volume = volume;

}

public int getVolume() {

return volume;

}

public void setVolume(int volume) {

this.volume = volume;

makeNoise();

}

public abstract void makeNoise();

}

Questions (15 min) Start time:

9. Summarize the differences between Model 2 and your answer to #3.

10. Open LoudToy.java (from Model 2) in your IDE. Remove the word abstract from the class
definition. What are the two compiler errors?

11. Put back the word abstract in the class definition, and then remove the word abstract

from the method definition. What is the compiler error now?



12. Remove the definition of makeNoise altogether, and notice the compiler error. Why is it
necessary to declare this method in LoudToy?

13. Undo all changes in LoudToy.java, and look at the main method in Main.java. What is the
compiler error message? Why do you think Java doesn’t allow you to construct a LoudToy?

public static void main(String[] args) {

LoudToy toy1 = new LoudToy(1);

toy1.makeNoise();

}

14. Open ToySheep.java and rename makeNoise to makeNoise2. What is the compiler error?

15. Rename the method back to makeNoise, but change void to int. What is the error now?

16. Explain how an abstract method is like a contract.



Model 3 Java Interfaces

An interface is similar to an abstract class, except that all methods are automatically public and
abstract. Likewise, all fields are automatically public, static, and final. These keywords are
omitted in the interface definition:

public interface Rechargeable {

int MAX_CHARGE = 10;

int getCharge();

void recharge();

}

Classes do not extend interfaces; they implement them:

public class CellPhone implements Rechargeable {

private int chargeLevel;

private int volume;

public CellPhone(int chargeLevel, int volume) {

this.chargeLevel = chargeLevel;

this.volume = volume;

}

public int getCharge() {

return chargeLevel;

}

public void recharge() {

chargeLevel = MAX_CHARGE;

}

public int getVolume() {

return volume;

}

public void setVolume(int volume) {

this.volume = volume;

}

public void makeCall() {

System.out.println("Ring... Hello?");

}

}



Questions (15 min) Start time:

17. What two methods are required by Rechargeable?

18. Modify your ToyRobot.java to implement the Rechargeable interface. What changes did
you need to make?

19. Consider the following rechargeAll method. What type of objects are stored in the list?

public static void rechargeAll(ArrayList<Rechargeable> list) {

for (Rechargeable item : list) {

item.recharge();

}

}

20. Consider the following main method. Explain the significance of storing ToyRobot and
CellPhone objects in the same ArrayList when calling rechargeAll.

public static void main(String[] args) {

ArrayList<Rechargeable> items = new ArrayList<>();

items.add(new ToyRobot());

items.add(new CellPhone(4, 5));

rechargeAll(items);

}

21. Explain how an interface is like a contract.


	Loud Toys
	Abstract Methods
	Java Interfaces

