
Classes and UML
When you define a class in Java, you are designing a new type of object. Each object has its own
copy of the variables and methods in the class.

Manager: Recorder:

Presenter: Reflector:

Content Learning Objectives

After completing this activity, students should be able to:

• Define the terms: attribute, method, constructor, scope.

• Implement non-static methods based on a UML diagram.

• Distinguish static, instance, parameter, and local variables.

Process Skill Goals

During the activity, students should make progress toward:

• Writing method signatures exactly as shown in a UML diagram. (Information Processing)

Copyright © 2024 Chris Mayfield and Helen Hu. This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Model 1 The Die Class

The following class represents an individual “die” in a game of dice. The diagram on the right
is a graphical summary of the attributes (variables) and methods of the class.

/**

* Simulates a die object.

*/

public class Die {

private int face;

/**

* Constructs a die with face value 1.

*/

public Die() {

this.face = 1;

}

/**

* @return current face value of the die

*/

public int getFace() {

return this.face;

}

/**

* Simulates rolling the die.

*

* @return new face value of the die

*/

public int roll() {

this.face = (int) (Math.random() * 6) + 1;

return this.face;

}

}

Questions (10 min) Start time:

1. Consider the Die class:

a) What are the attributes?

b) What are the methods?

2. In the class diagram (on the upper right):

a) What do the + and - symbols represent?

b) What does the : represent?

3. Open the provided Die.java and run the program several times. Then answer the following
questions about the main method:

a) What is the data type of d1 and d2?

b) What are the initial values of the dice?

c) What method changed the dice values?

4. Write a statement that declares and initializes a Die variable named lucky.

5. When you create an object, Java invokes a constructor. This method has no return type and
has the same name as the class itself. What does the Die() constructor do?

6. Notice how the roll method refers to this.face, yet that variable is not declared in the
method. What does the roll method change, in terms of the Die object?

Model 2 The Circle Class

Unified Modeling Language (UML) provides a way of graphically illustrating a class’s design,
independent of the programming language.

Questions (15 min) Start time:

7. Consider the Circle class:

a) How many attributes does the class have?

b) How many methods does the class have?

8. Based on Model 1 and Model 2, what is typically public and what is typically private?

The following questions will have you implement the Circle class exactly as shown in the UML
diagram above. Do not worry about writing Javadoc comments for this activity.

9. Write the code that declares the radius attribute (above the first comment). An outline of
Circle.java is provided below for context.

public class Circle {

// constructor goes here

// other methods go here

}

10. Write the code for the Circle constructor. Notice that, in contrast to Model 1, the Circle

constructor has a parameter. Assign the parameter radius to the attribute this.radius.

11. Write the code for getRadius. (Refer to Model 1 for an example.)

12. Write the code for setRadius. Like the constructor, it should assign the parameter to the
corresponding attribute.

13. Write the code for area. The area of a circle is πr2. PI is in the Math class.

14. Write the code for circumference. The circumference of a circle is 2πr.

15. Write a main method that creates a Circle object with a radius of 2.0 and displays its area
and circumference (using println).

Model 3 Variable Scope

As a team, review and discuss the provided SwapCircle.java and SwapDriver.java source files.
Then identify the scope of each variable (i.e., where it can base used) based on the table below.

Where declared? Where used? Example

static variables
(“class variables”)

declared outside of all
methods (typically at the
start of the class)

anywhere in the class
(or in other classes if
also public)

circleCount in the
SwapCircle class

instance variables
(“attributes”)

declared outside of all
methods (typically after
any static variables)

any non-static method
(or in static methods
when another object
has been created)

radius in the
SwapCircle class

parameters
declared inside the ()’s of
a method signature

anywhere within the
method where they are
declared

radius in the
SwapCircle

constructor

local variables
declared inside a method
(or inside another block
of code, like a for loop)

anywhere within the
method or code block
after they are declared

temp in the swapInts

method

Questions (20 min) Start time:

16. Identify one static variable from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) What is one example of somewhere it cannot be used?

17. Identify one instance variable from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) What is one example of somewhere it cannot be used?

18. Identify one parameter from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) Where can the variable not be used?

19. Identify one local variable from the SwapCircle class.

a) What is the name and purpose of the variable?

b) What is the scope of the variable?

c) Where can the variable not be used?

20. Run the SwapDriver program and summarize what you learn based on the output.

21. Notice that getRadius returns this.radius (from this object). In contrast, getCircleCount
does not use the keyword this. Why not?

22. Identify an example of where an instance variable is used within a static method.

a) In which method does this occur?

b) Why is the method able to access these instance variables, even though they are private?

c) Explain how this method is not a violation of the rule that instance variables cannot be
accessed inside a static method.

	The Die Class
	The Circle Class
	Variable Scope

