
Fall 2022
CS159 - Advanced Programming

Programming Assignment 2

 ColdDisPlay

1. Learning Objectives
This assignment is designed to help you learn two things. First, it will help you learn about conditions and loops.
Second, it will help you learn several programming patterns (including accumulators, indicator methods, and
segmented arrays,).

2. Overview
WeatherBits is a (fictitious) company that develops weather-related software of various kinds. They have asked
you to create the first version of a mapping programming called ColdDisPlay that can display temperatures or
wind chill factors. They have implemented the Map class which encapsulates the graphical user interface (GUI),
and want you to implement a utility class (named Weather), and a main class (named ColdDisPlay). The
relationships between these classes is illustrated in the following abstract UML class diagram:

-1-

Classes in green were written by the GUI development team, and classes in black are to be written by you for
this assignment.

When executed, the ColdDisPlay class will be passed either the String "Temperatures" or
"WindChills" as command-line argument 0. The subsequent command-line arguments will represent one or
more records, each of which has three fields containing the station identifier, the temperature at that station, and
the wind velocity at that station. It must then display the appropriate information on a Map object.

3. Background Information
Before you can start working on the classes, you need to learn a little bit about weather and weather collection.

3.1. Acronyms
ICAO International Civil Aviation Organization
MPH Miles Per Hour

3.2. Definitions
ICAO4 Codes. Four-letter codes for weather stations.

3.3. Calculation of Wind Chill Factors
Wind chill values are calculated differently in different parts of the world (and have been calculated differently
in the past). For the purposes of this project, you must use the following formula that was developed for North
American air temperatures at or below 50°F and wind speeds above 3mph:

w = 35.74 + 0.6215 · t – 35.75 · v0.16 + 0.4275 · t · v0.16

-2-

where w denotes the wind chill value in degrees Fahrenheit, t denotes the air temperature in degrees Fahrenheit,
and v denotes the velocity in miles per hour. For other temperatures and wind speeds, the wind chill value
must be the air temperature.

4. The Existing Class
Other programmers at WeatherBits have created the GUI, which is encapsulated in the Map class. It can be

summarized in a UML class diagram as follows:

These methods are described below.

Map()
Constructs a Map object for the given state. (Note: You have only been provided with data for Virginia,

so the actual parameter must be "va".)

setSummary()
Sets the summary information to display below the geographic information.

setTemperature()
Sets the data to display, and the color to display it in, for a particular ICAO4 code.

setTitle()
Sets the title of the map.

It is available for download at:

 https://w3.cs.jmu.edu/cs159/f22/pa2/Map.class

The data files for Virginia are available at:

 https://w3.cs.jmu.edu/cs159/f22/pa2/va.txt
 https://w3.cs.jmu.edu/cs159/f22/pa2/stations-va.txt

-3-

5. The Classes to be Written
You must write two classes, both of which are described below.

5.1. The Weather Class
The Weather class is used to perform a variety of calculations related to weather measurement and
forecasting.

5.1.1 UML Class Diagram
The following UML class diagram provides an overview of the attributes and methods in this class (which must
be in the default package).

5.1.2 Detailed Design Specifications
In addition to the specifications contained in the UML class diagram, this class must conform to the following
specifications.

1. All of the "constants" must be declared to be final.

2. isFreezing() must return true when the value of t is less than or equal to the

FREEZING_TEMPERATURE.

3. windChillNA() must calculate the wind chill factor (for North America) from the given temperature, t,

and wind velocity, v, using the approach described above.

3.1. It must not round or truncate the answer.

5.2. The ColdDisPlay Class
The ColdDisPlay class is the main class for the application.

5.2.1 UML Class Diagram
The following UML class diagram provides an overview of this class (which must be in the default package).

-4-

5.2.2 Detailed Design Specifications
In addition to the specifications contained in the UML class diagram, this class must conform to the following
specifications.

1. Command-Line Arguments
1.1. args[0] will contain a String describing the type of map to display (either "Temperatures" or

"WindChills").
1.2. For i equal to 1, 4, 7, 10, etc., args[i+0], args[i+1], and args[i+2] will contain String

representations of the station identifier (a String ICAO4 code), the temperature at that station (a
double), and the wind velocity at that station (a double).

1.3. There may be one or more such records.
2. The main() Method

2.1. If the number of command-line arguments is invalid it must display a Map with the title of "Data
Error".

2.1.1.It is invalid for args.length to be 1.
2.1.2.It is invalid for args.length - 1 to be a multiple of anything other than 3.

2.2. If the number of command-line arguments is valid it must display a Map containing either temperatures
or wind chill factors for every station based on the value of args[0] (which you may assume is
always valid).

2.2.1. The title of the Map must be identical to args[0].
2.2.2. If wind chills are being displayed, they must be displayed in Color.BLACK.
2.2.3. If temperatures are being displayed, they must be displayed in either Color.BLUE or

Color.GREEN.
2.2.3.1. If a temperature is at or below freezing then it must be displayed in Color.BLUE.
2.2.3.2. Otherwise it must be displayed in Color.GREEN.

2.3. Must display the range (of temperatures or wind chill factors) as summary information.
2.3.1.The summary information must be formatted using the attribute named RANGE_FORMAT which

must contain the String literal "Min: %6.1f, Max: %6.1f". Hint: You can use the
static method named format() in the String class for this purpose.

Note that the Color class is in the package java.awt (not java.lang) so will need to be imported. In
other words, the first statement in the class must be either:

import java.awt.*;

or

import java.awt.Color;

-5-

6. Submission
You must submit (using Gradescope):

1. Your implementation of the two classes you wrote. Do not include the Map class or the data files.

There is no limit on the number of submissions and no penalty for excessive submissions.

Note that your submission will not be graded if it does not comply with the specifications. So, your submission should
include a stubbed-out version of all of the classes. (This will allow you to get credit for the classes/methods that you
do implement correctly.)

7. Grading
Your code will first be graded by Gradescope and then by the Professor. The grade you receive from Gradescope
is the maximum grade that you can receive on the assignment

7.1. Gradescope Grading
Your code must compile (in Gradescope, this will be indicated in the section on “Does your code compile?”) and
all class names and method signatures must comply with the specifications (in Gradescope, this will be indicated
in the section on “Do your class names, method signatures, etc. comply with the specifications?”) for you to
receive any points on this assignment. Gradescope will then grade your submission as follows:

Conformance to the Style Guide: 20 points (Partial Credit Possible; Success Required)
Correctness: 80 points (Partial Credit Possible)

Note that "Conformance to the Course Style Guide" is described as being "Success Required". This means that
Gradescope will not assess subsequent criteria unless this criterion is satisfied (and you will receive a grade of 0
for the criteria that aren't assessed). So, in this case, if your code does not conform to the style guide then it will
not be assessed for correctness (and you will receive a grade of 0 for correctness).

As before, Gradescope will provide you with hints, but may not completely identify the defects.

7.2. Manual Grading
After the due date, the Professor may manually review your code. At this time, points may be deducted for
inelegant code, inappropriate variable names, bad comments, etc.

-6-

8. Recommended Process
Since nobody will be looking over your shoulder, you can use any process that you would like to use. However,
it is strongly recommended that you use the process described here.

8.1. Get Started
1. Read and understand the entire assignment.

2. Create a project for this assignment named pa2. (Remember, do not create a module and create

separate folders for source and class files).

3. Activate Checkstyle for this assignment.

4. Add the two data files to the project by dragging them from a file explorer into Eclipse. Specifically,
drag them into the pa2 project (not a directory/folder insider of the pa2 project)

5. Add Map.class to the project. See the Department Wiki at:

https://wiki.cs.jmu.edu/student/eclipse/help#using_third-party_classjar_files

for help.

8.2. Understand the Calculations and Develop Test Cases
1. By hand (i.e., using paper and pencil), calculate the wind chill factors for the following temperatures and

wind velocities.

Temperature Wind Speed
20.2 17.4
40.0 10.0

-15.0 15.0
50.0 10.0
49.9 4.0
50.0 3.1
5.0 13.0

51.0 20.0

59.0 3.1

95.0 10.0

20.0 3.0

-10.0 3.0

49.9 2.9

53.0 3.0

93.0 2.0

-7-

Of course, you may use a calculator, but you should make sure you understand the differences that may arise
when using a calculator and when using Java.

Note that the different test cases are color-coded. Before you start writing any code, make sure that you
understand the different colors. (Hint: They are related to the algorithm for calculating wind-chill factors
described above.)

8.3. Stub-Out the All of the Classes
1. Create a version of the Weather class that contains all of the methods (with appropriate signatures),

each of which should return 0.0 or false as appropriate.

2. Add the "javadoc" comments to the Weather class and the methods in it.

3. Check the style of the Weather class and make any necessary corrections.

4. Create a version of the ColdDisPlay class that has a main() method (with appropriate signature)
that does nothing.

5. Add the "javadoc" comments to the ColdDisPlay class and the methods in it.

6. Check the style of the ColdDisPlay class and make any necessary corrections.

8.4. Implement and Test the Weather Class
1. Implement the isFreezing() method.

2. Test the isFreezing() method using the examples from above and debug it if necessary. (Note: You
will need to develop a main class to test your code.)

3. Implement the windChillNA() method.

4. Test the windChillNA() method using the examples from above and debug it if necessary.

8.5. Implement and Test the ColdDisPlay Class
1. Implement and test the part of the code that determines if the correct number of command-line

arguments has been given and sets the title to "Data Error" when appropriate.

2. Implement and test the part of the code that invokes the setTitle() method, passing it the
appropriate String.

3. Implement and test the part of the code that processes the remaining records and invokes the
setTemperature() method for each record.

4. Implement and test the part of the code that determines the minimum and maximum data value and
invokes the setSummary() method.

The following command-line arguments:

 Temperatures K6V3 20.2 17.4 KCHO 40.0 10.0 KCJR 51.0 20.0 KFVX 50.0 3.0 KHSP -15.0 15.0

should generate the following Map:

-8-

9. Help
The Math class has a static method with the signature pow(double value, double exponent)
that you can use to calculate value raised to the exponent power.

10. Questions to Think About
You don't have to submit your answers to these questions, but you should try to answer them because they will
help you determine whether or not you understand some of the important concepts covered in this assignment.

1. Why shouldn't the isFreezing() method use an if statement, switch statement, or ternary
operator? (In other words, why will points be deducted if your method does?)

2. Why would it be even worse if the isFreezing() method used a loop? (In other words, why will
even more points be deducted if your method uses a loop?)

3. How can you eliminate duplicate code within a single class?

4. How can you eliminate duplicate code across classes?

-9-

11. Looking Back - The Big Picture
By the time you complete this assignment you should have learned many things, including but not limited to the
following “big picture” issues.

• The same kinds of problems need to be solved in a wider variety of applications. Hence, studying
patterns, and being able to identify them, is incredibly important.

• Intermediate variables can be used to simplify code in which different actual parameters must be passed
to a method depending on the value of a Boolean expression.

• One sometimes needs to iterate over an array (or other collection) in steps greater than one (e.g., in steps
of 3 for this assignment).

• It is easy to mistakenly use multiple loops in a row when one will suffice (and be clearer).

-10-

