
Computer Security (aka, Cybersecurity)

Dr. Chris Mayfield
Department of Computer Science
James Madison University

Sep 30, 2014

WWW stands for "World Wide Web"

WWW stands for "Wild Wild West"

Reality check

The Internet is an open network

- Designs are in the public domain
- Built by the people, for the people

Anyone can send a packet anywhere

- Endpoints don't have to receive them
- Principle of Network Neutrality
 - All data/packets should be treated equally
 - ► ISPs and governments should not discriminate

Openness drives innovation

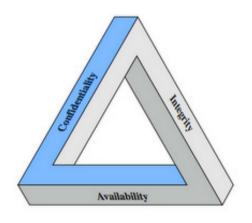
- Side effect: "anything goes" (good/bad)
- ▶ New applications coming out all the time

What does "security" mean?

Access control

As a human being, you have the right to control

- your information (data, files, identity, . . .)
- your property (computers, phones, TVs, ...)


Control means to allow or to restrict access

in an environment where "anything goes"

Computer security is part of information security (InfoSec)

- ► See http://en.wikipedia.org/wiki/Information_security
- "Defend from unauthorized access, use, disclosure, disruption, modification, perusal, inspection, recording, or destruction."

CIA triad

Source: digitalthreat.net

Three fundamental aspects of information security

Affects the way information is:

- Stored
- Processed
- Transmitted

What can go wrong?

And what can be done about it?

(Terminology: threats and solutions)

OS security

Threats

- ► Unauthorized access
- ► Insecure passwords
- Malicious processes
- Vulnerabilities in OS
- Key loggers, sniffers

Solutions

- User accounts, permissions
- Password policies, auditing
- CPU privileged instructions
- Security updates, patches
- ► Trusted software sources

Network security

Threats

- Unauthorized access
- ▶ Virus, worm
- ► Trojan horse
- Spyware, phishing
- ▶ Denial of service

Solutions

- Firewall (hardware/software)
- Antivirus software (maybe)
- Intrusion detection system
- Content filtering, education
- Redirection/dropping packets

Spoiler Alert!

Perfect security is impossible

Possible, but worth preparing for?

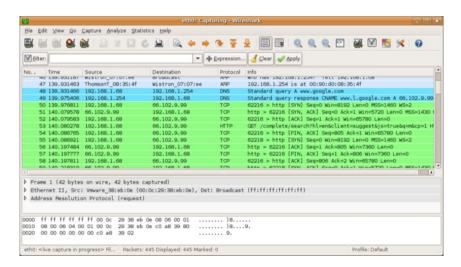
Security in practice

Securing a system is a continual process

Cost/benefit analysis of threats/solutions

Trade-off of functionality and security

lacktriangle Too invasive ightarrow users undermine the system



Source: digitalunion.osu.edu

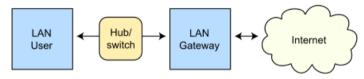
Two more problems

(that encryption can solve)

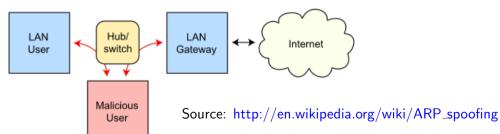
Sniffing

Cryptography

Symmetric encryption


- Secret key (mathematical formula) encodes data
- Chances of guessing the key is nearly impossible
- Problem: how do a server/client agree on a key?

Public-key encryption


- Generate a pair of keys (make one public, one private)
 - You can't figure out one, given the other
 - ▶ But the keys are "inverses" of each other
- ▶ Anyone can use your public key to send you a message
 - And you use your private key to decrypt it
 - Also useful for establishing your identify

Spoofing

Routing under normal operation

Routing subject to ARP cache poisoning

Digital signatures

Certificate authorities

- Symantec (VeriSign, Thawte, Geotrust)
- Comodo Group
- ► Go Daddy

Solution: verify the identify of servers

- ▶ When you use HTTPS, you browser gets certificate of server
- ▶ The certificate has been encrypted with a CA's private key
- ▶ Your browser uses the CA's public key to decrypt the cert
- ▶ If everything checks out, you know you have the right server

How do we prosecute the bad guys?

Legal approaches

Problems

- ► Information theft
- Eavesdropping
- Distributed DoS
- Cybersquatting

Legislation

- "Anything of value" (CFAA)
- ► Information privacy (ECPA)
- Monitoring (USA PATRIOT)
- Registered trademarks (ACPA)

Advice and tips

http://www.us-cert.gov/ncas/tips