e
Chapter 2: Data Manipulation

« 2.1 Computer Architecture

« 2.2 Machine Language

» 2.3 Program Execution

» 2.4 Arithmetic/Logic Instructions

Copyright © 2015 Pearson Education, Inc. 2.1

e
Computer Architecture

» Central Processing Unit (CPU) or
processor

— Arithmetic/Logic unit versus Control unit
— Registers
* General purpose
» Special purpose
* Bus
* Motherboard

Copyright © 2015 Pearson Education, Inc. 2.2

e R T
Figure 2.1 CPU and main memory
connected via a bus

Central processing unit Main memory
Registers

Arithmetic/logic]
unit]
]

] Bus
]
Control 1
unit]

Copyright © 2015 Pearson Education, Inc. 2.3

e RV

Stored Program Concept

A program can be encoded as bit patterns
and stored in main memory. From there,
the CPU can then extract the instructions
and execute them. In turn, the program to
be executed can be altered easily.

Copyright © 2015 Pearson Education, Inc. 2.4

et S
Terminology

* Machine instruction: An instruction (or
command) encoded as a bit pattern
recognizable by the CPU

* Machine language: The set of all
instructions recognized by a machine

Copyright © 2015 Pearson Education, Inc. 2.5

mn—— e S
Machine Language Philosophies

* Reduced Instruction Set Computing (RISC)
— Few, simple, efficient, and fast instructions
— Examples: PowerPC from Apple/IBM/Motorola
and ARM
« Complex Instruction Set Computing (CISC)
— Many, convenient, and powerful instructions
— Example: Intel

Copyright © 2015 Pearson Education, Inc. 2.6

e R
Machine Instruction Types

» Data Transfer: copy data from one location
to another

 Arithmetic/Logic: use existing bit patterns
to compute a new bit patterns

* Control: direct the execution of the
program

Copyright © 2015 Pearson Education, Inc. 2.7

e S -
Figure 2.2 Adding values stored in

memory

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

Copyright © 2015 Pearson Education, Inc. 2.8

e -
Figure 2.4 The architecture of the

machine described in Appendix C

Central processing unit Main memory
. Address Cell
Registers
0 Program counter 00
41 Bus 01]
02]
[12 Instruction register
: 03 1]
P . .
— P [

Copyright © 2015 Pearson Education, Inc. 210

R EEIRRRRREEEREEETR IR AR, ™~ -
Parts of a Machine Instruction

* Op-code: Specifies which operation to
execute

* Operand: Gives more detailed information
about the operation

— Interpretation of operand varies depending on
op-code

Copyright © 2015 Pearson Education, Inc. 2-11

: -
Figure 2.5 The composition of an

instruction for the machine in
Appendix C

Op-code Operand
| |

| | | |
0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

Copyright © 2015 Pearson Education, Inc. 2.12

s R S
Figure 2.6 Decoding the instruction
35A7

Instruction ~|: 3 5 A 7
/ | \I

Op-code 3 means

to store the contents This part of the operand identifies
of a register in a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Copyright © 2015 Pearson Education, Inc. 213

" Figure 2.7 An encoded version of the

instructions in Figure 2.2 Adding
Values stored in memory

Encoded
instructions Translation
156C Load register 5 with the bit pattern
found in the memory cell at
address 6C.
166D Load register 6 with the bit pattern
found in the memory cell at
address 6D.
5056 Add the contents of register 5 and
6 as though they were two's
complement representation and
leave the result in register 0.
306E Store the contents of register 0
in the memory cell at address 6E.
C000 Halt.

Copyright © 2015 Pearson Education, Inc.

2-14

s I B -
Program Execution

» Controlled by two special-purpose
registers

— Program counter: address of next instruction
— Instruction register: current instruction
* Machine Cycle
— Fetch
— Decode
— Execute

Copyright © 2015 Pearson Education, Inc. 2.15

;.

Figure 2.8 The machine cycle

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

i

2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.

Copyright © 2015 Pearson Education, Inc. 216

e -
Figure 2.9 Decoding the instruction

B258

Instruction—[B 2 5 8
/ I \I

Op-code B means to

change the value of This part of the operand is the
the program counter address to be placed in the
if the contents of the program counter.

indicated register is
the same as that in
register 0.

This part of the operand identifies
the register to be compared to
register 0.

Copyright © 2015 Pearson Education, Inc. 2.17

" Figure 2.10 The program from Figure

2.7(adding) stored in main memory ready
for execution

Program counter contains
address of first instructions.

CPU Main memory
Address Cells
Registers
Program counter A0
o [J
A0 Bus Al
1 [=——— A2 ~ Propram iz
6D | stored in
1 a2 main memory
2 : Ad beginning at
address AO.
A5
Instruction register A6
A7
A8
F []
A9 1

Copyright © 2015 Pearson Education, Inc. 218

e I -
Figure 2.11 Performing the fetch step

of the machine cycle

CPU Main memory

Program counter
Address Cells

A0
Bus e
. . = Al
Instruction register
156C A2
A3

a. At the beginning of the fetch step the instruction starting at address AOQ is
retrieved fromm memory and placed in the instruction register.

Copyright © 2015 Pearson Education, Inc. 219

e S R "
Figure 2.11 Performing the fetch step

of the machine cycle (continued)

CPU Main memory

Program counter Address Cells
A2
A0
Bus
: : Al
Instruction register

156C A2
A3

b. Then the program counter is incremented so that it points to the next instruction.

Copyright © 2015 Pearson Education, Inc. 2.20

I
Arithmetic/Logic Operations

* Logic: AND, OR, XOR
— Masking

* Rotate and Shift: circular shift, logical shift,
arithmetic shift

* Arithmetic: add, subtract, multiply, divide

— Precise action depends on how the values are
encoded (two’s complement versus floating-
point).

Copyright © 2015 Pearson Education, Inc. 2.21

e A
Figure 2.12 Rotating the bit pattern
65 (hexadecimal) one bit to the right

________ The original bit pattern
I

The bits move one position
to the right. The rightmost
bit “falls off” the end and

is placed in the hole at the
other end.

________ The final bit pattern

Copyright © 2015 Pearson Education, Inc. 2.2

