- Forward


Great Circle Distances
for a Spherical Planet


Prof. David Bernstein
James Madison University

Computer Science Department
bernstdh@jmu.edu

Print

Definitions
Back SMYC Forward
  • Great Circle:
    • A section of a sphere that contains a diameter of the sphere
  • Orthodrome:
    • Shortest distance between points on a sphere (which will be a segment of a great circle)
From Longitude/Latitude to Cartesian Coordinates
Back SMYC Forward

Notation

images/longitude-latitude-to-cartesian.gif
From Longitude/Latitude to Cartesian Coordinates (cont.)
Back SMYC Forward
  • Derivation of the Conversion:
    • \(\cos \phi = d / R \Rightarrow d = R \cos \phi\)
    • \(\cos \lambda = p_{z}/d \Rightarrow p_{z} = d \cos \lambda = R\cos \phi \cos \lambda\)
    • \(\sin \lambda = p_{x}/d \Rightarrow p_{x} = d \sin \lambda = R \cos \phi \sin \lambda\)
    • \(p_{y} = R \sin \phi\)
  • Note:
    • This is very similar to the conversion of spherical coordinates to Cartesian coordinates (but uses the latitude not the colatitude)
Finding the Great Circle Distance
Back SMYC Forward

The great circle distance is the portion of the circumference described by \(\alpha\).

images/great-circle-distance.gif
  • Arc Length (Using Degrees):
    • \(d = \frac{\alpha}{360} \cdot 2 \pi R\)
  • Arc Length (Using Radians):
    • \(d = \frac{\alpha}{2 \pi} \cdot 2 \pi R = \alpha R\)
Going Further: Finding the Angle from the Longitude and Latitude
Back SMYC Forward
  • From the Law of Cosines:
    • \(\cos \alpha = \frac{\bs{q} \cdot \bs{p}}{||\bs{q}|| \enspace ||\bs{p}||}\)
  • Solving:
    • \(\cos \alpha = \frac{ (R \cos \phi_{q} \cos \lambda_{q}) (R \cos \phi_{p} \cos \lambda_{p}) + (R \cos \phi_{q} \sin \lambda_{q}) (R \cos \phi_{p} \sin \lambda_{p}) + (R \sin \phi_{q})(R \sin \phi_{p}) }{R R} \)
    • \(\alpha = \cos^{-1} (\cos \phi_{q} \cos \lambda_{q}) (\cos \phi_{p} \cos \lambda_{p}) + (\cos \phi_{q} \sin \lambda_{q}) (\cos \phi_{p} \sin \lambda_{p}) + (\sin \phi_{q})(\sin \phi_{p}) \)
There's Always More to Learn
Back -