
Programs 3

Thus far this book has not used the word “program” and, instead, has used the phrase “soft-
ware product”. This chapter explores a (somewhat) formal definition of the word “program”,
and considers different types of Java programs. It then borrows from the existing types of Java
programs to design and build a type of Java program that is especially useful in the context
of multimedia software products.

3.1 Java Programs
For the purposes of this book, a program (in an object-oriented programming language) is
defined as follows:
..
Definition 3.1 A program in an object-oriented programming language is a group of cooper-
ating classes with a well-defined entry point (i.e., a method that should be executed first) and,
perhaps, a reentry point and/or an exit point.
..

Java has supported many different kinds of programs over the years. On ‘desktop’ and ‘laptop’
computers, the two most common programs are ¡em¿applications¡/em¿ and ¡em¿applets¡/em¿.
On ‘small’ devices (like mobile phones), the two most common are ¡em¿MIDlets¡/em¿ (where
MID is an acronym for “mobile information devices”) and ¡em¿apps¡/em¿. On ‘servers’ (espe-
cially HTTP servers) the most common are ¡em¿servlets¡/em¿. The differences between them
are summarized in Table 3.1. In short, they differ in the way they are executed and in the
top-level container they use.

Environment Top-Level Container Entry Point
Applet Browser JApplet init() then start()

Application Operating System JFrame main()

MIDlet Operating System Screen startApp()

Servlet (HTTP) Server N/A init() then service()

Table 3.1 Java Programs

Applets normally run in a virtual machine inside of a WWW browser.1 They are executed

1Applets can actually run inside of a variety of different desktop/laptop programs. For simplicity, this book
focuses on the most common situation. When run inside of a browser, applets are generally limited/restricted
in a variety of ways. For example, applets in a browser typically can’t read or write files on the client, run

executables on the client, or communicate with any machine other than the originating host.

43

44 Chapter 3 Programs

when the browser loads an HTML page that contains an <applet> element. When such a
page is first loaded, the applet’s init() and start() methods are called. An applet’s top-
level container is normally a JApplet object. Applications run in a virtual machine directly
under the operating system (OS), and are normally executed by clicking on them (or using the
java command) which causes the OS to call the main() method. An application’s principle
top-level container is normally a JFrame object (though it may use multiple JFrame and/or
JDialog objects). MIDlets run in a virtual machine directly under the operating system,
and are normally executed by clicking on them which causes a MIDlet manager to invoke
the startApp() method. A MIDlet’s top-level container is normall a Screen object (though
it may be a Canvas object or, indeed, any Displayable). Finally, servlets run in a virtual
machine inside of a server, typically a WWW (i.e., HTTP) server. They are constructed by the
server and initialized with a call to init(). When a server receives a GET or POST request
that requires a particular servlet, it calls its service() method. Since midlet run inside of a
server, they are “headless” (i.e., they do not have a top-level container.

Servlets, while very important in some settings, are not relevant in a book that focuses
on user-facing multimedia products. MIDlets, while important for many years, have been
supplanted on phones by apps (which are not “pure” Java). Applets were also important for
many years, but are no longer supported on any major browser (for reasons that are beyond the
scope of this book). Hence, this book will only consider applications from here on. However,
it will make use of what has been learned by the other kinds of programs (especially applets)
to create an improved variety of application. Most importantly, it will create a application
with an improved life-cycle.

When an application is started the main() method is executed in a non-daemon thread
that this book refers to as the main thread. A single-threaded application terminates when
the System.exit() method is called, in response to a platform-specific event such as a SIGINT
or a Ctrl-C, or when the main thread ‘drops out of’ the main() method.2 A multi-threaded
application terminates when the System.exit() method is called, in response to a platform-
specific event, or when all non-daemon threads have died.3 Note that all GUI applications are,
intrinsically, multi-threaded since they have both a main thread and an event dispatch thread.

The life-cycle of an applet is quite different than that of an application, and much more
appropriate for multimedia software products. When an HTML page containing an <applet>

element is loaded into a browser for the first time, the appropriate object (i.e., the descendent
of the Applet class referred to in the <applet> element) is constructed and its init() and
start() methods are called in a thread other than the event dispatch thread. Then, each
time the user leaves the page containing the applet, the stop() method is called (again, not

2This is actually referred to as an orderly termination. An application can also by terminated abruptly by

calling the Runtime.halt() method in the Runtime class.

3The addShutdownHook() method in the RunTime class can be used to perform specific tasks during the

termination process. To do so, one creates a shutdown hook (a Thread object that has not been started) and
passes it to the Runtime object (obtained by a call to the static method Runtime.getRuntime()). At the onset
of the termination process, each of the shutdown hooks is started. Unfortunately, the shutdown hooks are

started in no particular order. So, if you need to have the shutdown tasks performed in a particular order
they should be performed by a single shutdown hook. Some people argue that shutdown tasks should be
performed in the finalize() method of each object. It is certainly possible to do it this way since, after all
of the shutdown hooks have died, the finalize() method will be called on all objects that have not had their

finalize() method called previously (i.e., after they were garbage collected). However, it is very difficult to
write finalize() methods that behave correctly.

3.1 Java Programs 45

in the event dispatch thread). Similarly, each time the user reloads the page containing the
applet, the start() method is called. When the browser is shut down, the destroy() method
is called (again, not in the event dispatch thread). As with GUI applications, all applets are
multithreaded (since all applets have a GUI even if they don’t use it in any meaningful way).

To further understand the shortcomings of the standard application lifecycle, and how it
can be improved, it is helpful to consider a simple example. In particular, consider a variant
of the application from Chapter 2 that displays a random message when a button is pressed.
In this variant, rather than requiring input from the user, the application changes the message
every second.

: // Java libraries

import javax.swing.*;

// Multimedia libraries

import event.*;

public class BadTimedMessageSwingApplication implements MetronomeListener,

Runnable

{

private static final String[] MESSAGES = {

"What a great book.","Bring on the exercises.",

"Author, author!","I hope it never ends."};

private int index;

private JLabel label;

private Metronome metronome;

public static void main(String[] args)

{

try

{

SwingUtilities.invokeAndWait(new BadTimedMessageSwingApplication());

}

catch (Exception e)

{

e.printStackTrace();

}

}

public void handleTick(int millis)

{

index = (index + 1) % MESSAGES.length;

label.setText(MESSAGES[index]);

}

46 Chapter 3 Programs

public void run()

{

// Setup the window

JFrame frame = new JFrame();

frame.setSize(400, 200);

// Setup the content pane

JPanel contentPane = (JPanel)frame.getContentPane();

contentPane.setLayout(null);

// Add a component to the container

label = new JLabel(" ", SwingConstants.CENTER);

label.setBounds(0, 0, 400, 200);

contentPane.add(label);

metronome = new Metronome(1000);

metronome.addListener(this);

metronome.start();

frame.setVisible(true);

}

}

The shortcoming of this application is that the message continues to be changed when
the JFrame is iconified meaning the user might miss one of the very important messages (and
wasting system resources). If, on the other hand, this program were an applet, the Metronome
could be stopped in its stop() method (i.e., when the user left the page containing the applet)
and re-started in its start() method (i.e., when the user returned to the page containing the
applet).

Fortunately, with a little thought, these same kinds of “hooks” can be added to an appli-
cation.

3.2 An Applet-Like Application
Since the same kind of functionality will be required in every multimedia application, it makes
sense to construct a class that can be specialized for specific purposes. For applets (that use
the Swing windowing toolkit), this is the role played by the JApplet class. So, the objective
here is to design and implement a JApplet class that plays the same role for applications.

3.2.1 An Applet-Like Entry Point

Two things are required to provide an applet-like entry point. First, an JApplication object
must have an init() method that is called at initialization-time. Second, this method must

3.2 An Applet-Like Application 47

Figure 3.1 Initial Design of a JApplication Class

be called in the event dispatch thread (since all GUI tasks, including initialization tasks, must
be performed in the event dispatch thread.

As mentioned in Chapter 2 the second specification can be satisfied using the
invokeAndWait() method in the SwingUtilities class, which is passed an object that im-
plements the Runnable interface. So, the JApplication class must implement the Runnable

interface. The second specification can then be satisfied by having the run() method in the
JApplication class call an init() method. This is illustrated in Figure 3.1.

As a convenience, the JApplication class includes a static
invokeInEventDispatchThread() method. This method calls the invokeAndWait()

method in the SwingUtilities class and, in the event of an exception, displays an
appropriate error message.

protected static void invokeInEventDispatchThread(Runnable runnable)

{

try

{

SwingUtilities.invokeAndWait(runnable);

}

catch (Exception e)

{

JOptionPane.showMessageDialog(null,

"Unable to start the application.",

48 Chapter 3 Programs

"Error", JOptionPane.ERROR_MESSAGE);

}

}

The run() method in the JApplication class is then implemented as follows:

public final void run()

{

constructMainWindow();

init();

mainWindow.setVisible(true);

}

The constructMainWindow() method in the JApplication class constructs a JFrame, sets its
properties, and sets the properties of the content pane. Note that this JFrame does not allow
the user to resize it. This is both for convenience and to make it consistent with the main
container in a JApplet (which cannot be resized).

mainWindow = new JFrame();

mainWindow.setTitle("Multimedia Software - jblearning.com");

mainWindow.setResizable(false);

contentPane = (JPanel)mainWindow.getContentPane();

contentPane.setLayout(null);

contentPane.setDoubleBuffered(false);

The init() method is abstract so that it must be implemented by all concrete specializations.

public abstract void init();

3.2.2 An Applet-Like Lifecycle

At this point only the entry point of JApplication and JApplet objects are similar. In
particular, eecall that a JApplet has its transition methods called by the browser when the
page containing the JApplet is loaded/unloaded (see the discussion on page 44). Ideally, the
transition methods in JApplication objects would be called at corresponding times. This can
be accomplished by making JApplication a WindowListener on its main window.

To do so, the following is added to the constructMainWindow() method:

3.2 An Applet-Like Application 49

mainWindow.setDefaultCloseOperation(

JFrame.DO_NOTHING_ON_CLOSE);

mainWindow.addWindowListener(this);

The first statement instructs the main window to do nothing when the “close” button is clicked.
The second statement registers the JApplication as a WindowListener.

Now, it is necessary to actually implement the WindowListener interface. When a
windowOpened() message is generated, the start() method must be called.

public void windowOpened(WindowEvent event)

{

resize();

start();

}

The same is true when a windowDeiconfied() message is generated.

public void windowDeiconified(WindowEvent event)

{

start();

}

When a windowIconified() message is generated, the stop() method must be called.

public void windowIconified(WindowEvent event)

{

stop();

}

When a windowClosing() message is generated, the exit() method must be called.

public void windowClosing(WindowEvent event)

{

exit();

}

50 Chapter 3 Programs

The exit() method asks the user to confirm and then calls the stop() method.

private void exit()

{

int response;

response = JOptionPane.showConfirmDialog(mainWindow,

"Exit this application?",

"Exit?",

JOptionPane.YES_NO_OPTION);

if (response == JOptionPane.YES_OPTION)

{

mainWindow.setVisible(false);

stop();

mainWindow.dispose();

}

}

Finally, when a windowClosed() message is generated (which happens after the
windowClosing() message is generated and the stop() method is called), the destroy()

method is called.

public void windowClosed(WindowEvent event)

{

destroy();

System.exit(0);

}

3.2.3 Providing an Applet-Like Top-Level Container

As discussed in Chapter 2, a program shouldn’t use its top-level container directly. Indeed, it
shouldn’t even know what kind of top-level container it has. To that end, the JApplication

class should play the role of a RootPaneContainer (as does the JApplet class). It does so by
delegating to the JFrame attribute it constructs in its init() method.

The final design is summarized in Figure 3.2 on the next page.
The “getters” are implemented as follows:

public Container getContentPane()

{

return mainWindow.getContentPane();

3.2 An Applet-Like Application 51

-mainWindow : JFrame

#args : String[]

#width : int {readOnly}

#height : int {readOnly}

+JApplication(args : String [], width : int, height : int)

+destroy()

+init()

+start()

+stop()

+invokeInEventDispatchThread(r : Runnable)

JApplication

+run()

<<Interface>>

java.lang.Runnable

+main(args : String [])

ConcreteJApplication

main() constructs an instance

+getContentPane() : Container

+getGlassPane() : Component

+getLayeredPane() : JLayeredPane

+setContentPane(p : Container)

+setGlassPane(p : Component)

+setLayeredPane(p : JLayeredPane)

<<Interface>>

javax.swing.RootPaneContainer

+windowActivated(e : WindowEvent)

+windowClosed(e : WindowEvent)

+windowClosing(e : WindowEvent)

+windowDeactivated(e : WindowEvent)

+windowDeiconi�ed(e : WindowEvent)

+windowIconi�ed(e : WindowEvent)

+windowOpened(e : WindowEvent)

<<Interface>>

java.awt.WindowListener

Figure 3.2 Final Design of the JApplication Class

}

public Component getGlassPane()

{

return mainWindow.getGlassPane();

}

public JLayeredPane getLayeredPane()

{

return mainWindow.getLayeredPane();

}

public JRootPane getRootPane()

52 Chapter 3 Programs

{

return mainWindow.getRootPane();

}

and the “setters” are implemented as follows:

public void setContentPane(Container contentPane)

{

mainWindow.setContentPane(contentPane);

}

public void setGlassPane(Component glassPane)

{

mainWindow.setGlassPane(glassPane);

}

public void setLayeredPane(JLayeredPane layeredPane)

{

mainWindow.setLayeredPane(layeredPane);

}

3.2.4 Specializing the JApplication Class

In the days when they were supported, one wrote an applet by extending the JApplet class. It
is now possible to do the same kind of thing by extending the JApplication class (and writing
any necessary supporting classes). Any code that needs to be executed when the window is
iconified must be put in the stop() method (that overrides the empty implementation in the
JApplication class. Simialrly, any code that (and writing any necessary supporting classes).
Any code that needs to be executed when the window is first opened or de-iconified must be
put in the start() method, and any code that needs to be executed when the window is closed
must be put in the destroy() method. While it is usually easy to identify the code that must
be in each of these methods, confusion can arise with respect to the init() method.

In particular, it may not be immediately clear what code should be in the init() method
and what code should be in the constructor. While some “initialization” code can go in either
location, it is essential to follow one rule – all code that involves GUI components must
be in the init() method. This is because all instructions involving GUI components must
be executed in the event dispatch thread (and the constructor will be executed in the main
thread).

3.2 An Applet-Like Application 53

3.2.5 An Example

It’s now easy to create a TimedMessageJApplication that provides the desired functionality
discussed earlier. As before, it must implement the MetronomeListener interface but now it
must also extend the JApplication class.

// Java libraries

import javax.swing.*;

// Multimedia libraries

import app.*;

import event.*;

public class TimedMessageJApplication extends JApplication

implements MetronomeListener

{

private static final String[] MESSAGES = {

"What a great book.","Bring on the exercises.",

"Author, author!","I hope it never ends."};

private int index;

private JLabel label;

private Metronome metronome;

}

The constructor performs all of the initialization tasks that are not related to the GUI.

public TimedMessageJApplication(String[] args, int width, int height)

{

super(args, width, height);

index = -1;

}

The init() method performs all of the initialization tasks that are related to the GUI.

public void init()

{

// Setup the content pane

JPanel contentPane = (JPanel)getContentPane();

contentPane.setLayout(null);

// Add a component to the container

54 Chapter 3 Programs

label = new JLabel(" ", SwingConstants.CENTER);

label.setBounds(0, 0, 400, 200);

contentPane.add(label);

metronome = new Metronome(1000);

metronome.addListener(this);

}

The start()) and stop() method start and stop the Metronome object respectively.

public void start()

{

metronome.start();

}

public void stop()

{

metronome.stop();

}

As before the handleTick()) method changes the message.

public void handleTick(int millis)

{

index = (index + 1) % MESSAGES.length;

label.setText(MESSAGES[index]);

}

Finally, the main() method constructs an instance and calls the (inherited)
invokeInEventDispatchThread() method.

public static void main(String[] args)

{

JApplication demo = new TimedMessageJApplication(args, 400, 200);

invokeInEventDispatchThread(demo);

}

3.3 Program Resources 55

3.3 Program Resources
Most multimedia programs, be they applications or applets, need to ‘load’ resources of various
kinds (e.g., artwork, preferences) at run time. While this is not a problem conceptually, it
can be somewhat problematic in practice because of the different ways in which applets and
applications can be ‘organized’ (e.g., in a .jar file, in a packaged set of classes, in an un-
packaged set of classes) and ‘delivered/installed’ (e.g., by an HTTP server, by an installer, as
files on a CD/DVD). Hence, in practice, it can be very difficult for a program to know where
resources are. Fortunately, with a little bit of effort, one can find resources in the same way
that the Java interpreter does.

3.3.1 Finding Resources

The Java interpreter obtains the byte codes that constitute a class using a class loader.4

Obviously, the class loader must be able to find the byte codes regardless of how the ap-
plet/application is ‘organized’ and ‘delivered/installed’. Fortunately, this same logic can be
used to load resources. To do so, one must first understand a little about reflection.

Every interface, class, and object in Java has an associated Class object that can be
used to obtain information about that interface’s/class’s/object’s attributes, methods, etc.
This information is encapsulated as Constructor, Field, Method , and Type objects. These
objects can be used for a variety of purposes. The ResourceFinder class that follows uses the
getResource() and getResourceAsStream() methods in Class objects.

Since, in the future, it might be desirable to create pools of ResourceFinder objects, this
class uses the factory method pattern as follows:

package io;

import java.io.*;

import java.net.*;

import java.util.*;

public class ResourceFinder

{

private Class c;

private ResourceFinder()

{

c = this.getClass();

}

4In fact, the Java interpreter uses three different kinds of class loaders. The bootstrap class loader loads sys-
tem classes (e.g., from rt.jar), the extension class loader loads standard extensions, and the system/application
class loader loads application classes (e.g., from the classpath).

56 Chapter 3 Programs

private ResourceFinder(Object o)

{

// Get the Class for the Object that wants the resource

c = o.getClass();

}

public static ResourceFinder createInstance()

{

return new ResourceFinder();

}

public static ResourceFinder createInstance(Object o)

{

return new ResourceFinder(o);

}

}

When constructed, a ResourceFinder object can be ‘told’ to use either its class loader (by
calling the default factory method) or another object’s class loader (by calling the explicit-value
factory method).

The findInputStream() method in the ResourceFinder class uses the appropriate Class
object (with the help of the class loader) to get a resource as an InputStream.

public InputStream findInputStream(String name)

{

InputStream is;

is = c.getResourceAsStream(name);

return is;

}

The resource can then be read from this InputStream.
In some situations, it may be more useful to have a ‘pointer’ to the resource, rather

than an InputStream. In such situations, on can use a uniform resource locator (URL).
URLs are encapsulated by the URL class and can be obtained (among other ways) using the
getResource() method in the Class class.

public URL findURL(String name)

{

URL url;

url = c.getResource(name);

3.3 Program Resources 57

return url;

}

3.3.2 Marking the Location of Resources

The ResourceFinder makes it possible to load resources from a variety of different sources,
however it does not solve every resource-related problem. In particular, by itself, it does not
solve some of the resource-related problems introduced by modern integrated development
environments (IDEs).

For organizational reasons, many IDEs keep the source code (i.e., the .java files) and the
byte code (i.e., the .class files) in different directories/folders. For example, several keep the
source code in a subdirectory (under the project directory) named src and the byte code in a
subdirectory named bin. They then either copy resources into the bin directory at runtime,
change the classpath at runtime, or both. This can mean that the structure of the file system
can be different from the structure of the .jar file when the product is deployed.

Fortunately, a simple “trick” can be used to avoid any complications that this causes.5 In
particular, one can put the resources in a package (e.g., named resources) that includes a
class (e.g., named Marker) that can be used to find them.

3.3.3 A Complete Example

The following TimedMessageDemo is almost identical to the TimedMessageJApplication ex-
cept that, rather than hard-coding the messages in a String[], it reads them into an
ArrayList<String> from a file named. messages.txt. It has the following structure:

public class TimedMessageDemo extends JApplication

implements MetronomeListener

{

private ArrayList<String> messages = new ArrayList<String>();

private int index;

private JLabel label;

private Metronome metronome;

}

and reads the messages (in the constructor) as follows:

5If one is intimately familiar with the way the IDE operates, this “trick” isn’t necessary and should probably
be avoided. However, it provides a fallback when all else fails, or when multiple different IDEs are being used.

58 Chapter 3 Programs

BufferedReader in = new BufferedReader(new InputStreamReader(is));

String line;

try

{

while ((line = in.readLine()) != null)

{

messages.add(line);

}

}

catch (IOException ioe)

{

messages.add("Best book ever!");

}

So that it can find the messages regardless of how the application is deployed, the file
named messages.txt is in a package named resources, that also contains the following
Marker class.

package resources;

public class Marker

{

}

A Marker object can then be used with a ResourceFinder object to create the InputStream
named is (that is used above to create the BufferedReader).

ResourceFinder rf = ResourceFinder.createInstance(new resources.Marker());

InputStream is = rf.findInputStream("messages.txt");

EXERCISES ...

1. Using your answers to Exercises 6 on page 38, 7 on page 39, and 8 on page 39, cre-
ate a class named OnOffJApplication providing the same functionality that extends
JApplication. (Note: Remember that it must implement the ActionListener inter-
face.)

2. Using your answers to Exercises 9 on page 40, 10 on page 40, and 11 on page 41, create a
class named TextBounceJApplication that provides the same functionality and extends

3.3 REFERENCES AND FURTHER READING 59

JApplication. The text must stop bouncing when the window is iconified and must start
bouncing again when it is deiconified.

3. Modify your answer to Exercise 2 so that message is initialized to the command-line
argument 0.

4. Build and execute a version of the TimedMessageDemo using your preferred development
environment.

5. Create an executable .jar file that contains the TimedMessageDemo and the file named
messages.txt. Make sure you can execute the application directly from the operat-
ing system.

REFERENCES AND FURTHER READING ..

Boese, E.S. (2010) An Introduction to Programming with Java Applets Jones and Bartlett Publishers,
Sudbury, MA.

Horstmann, C.S. and G. Cornell (2002) Core Java: Volume I - Fundamentals Sun Microsystems
Press, Palo Alto, CA

Horstmann, C.S. and G. Cornell (2002) Core Java: Volume II - Advanced Features Sun Microsystems
Press, Palo Alto, CA

