
Fall 2020

CS149 – Introduction to Programming

Programming Assignment 5

Testing and Debugging the Converter Class

Overview
The project manager at DukeDash hired a University of Virginia graduate to add some code to the
original Converter class (i.e., the version from programming assignment 2). However, the project
manager is concerned about the quality/correctness of the code and wants you to test it and debug it if
necessary.

Specifications Provided to the Other Programmer
The other programmer was provided with the following specifications for the Converter class:

1. The Converter class must have the following additional methods (over and above

those from programming assignment 2):

private static double inchesToFeet(double inches)

private static double inchesToMiles(double inches)

private static double mphToRPM(double mph)

The purpose of each method should be apparent from its name.

2. The mphToRPM() method must convert from miles per hour (mph) to rotations per

minute (RPM). It must assume that the diameter of the tire/wheel is 27 inches.

Existing Tests
A JMU graduate who works at DukeDash created a test suite for the original version of the
Converter class. It is named ConverterTest.java and, as it should be, is a main class. (Note:

It uses the JMUConsole class that you have used in the past and the Test class from the lab on test

harnesses.)

Your Tasks
You are responsible for writing a test suite for these new methods and testing the existing
implementation. If necessary, you must correct any defects in the code.

Recommended Process
1. Read and understand the entire assignment.

2. Create a directory/folder (e.g., named pa5) that will hold all of the files for this assignment.

3. Copy JMUConsole.class and Test.class into the directory you created for this

assignment. (You should have JMUConsole.class in the directory you created for earlier

programming assignments. You should have Test.class in the directory you created for the

lab on test Test.class harnesses.)

4. Download the . zip file containing the source code for the questionable implementation of the
Converter class and the ConverterTest class and unzip it into the directory you

created for this assignment.

5. Read and understand this version of the Converter class. (Do not use your version!)

6. Read and understand the ConverterTest class.

7. Compile the Converter class and the ConverterTest class. They should not contain any

syntax errors.

8. Check the style of the Converter class and the ConverterTest class. They may contain

style errors; if they do, fix them.

9. Execute ConverterTest so that you know the code from the original Converter class is

correct.

10. Add a method named inchesToFeetTest() to the ConverterTest class. This method

should have enough tests to ensure the correctness of the inchesToFeet() method in the

Converter class.

11. Add an invocation of inchesToFeetTest() to the main() method of the

ConverterTest class. (Note: Don’t eliminate any other tests. You want to make sure that

you don’t break anything that was working!)

12. Execute the test suite.

13. Debug the inchesToFeet() method in the Converter class if necessary.

14. Repeat steps 10-13 for both the inchesToMiles() method and the mphToRPM() method.

https://w3.cs.jmu.edu/bernstdh/web/cs149/pa1/ExistingClasses.zip
https://w3.cs.jmu.edu/bernstdh/web/cs149/pa5/ExistingClasses.zip

15. Submit both the corrected version of Converter.java and your implementation of

ConverterTest.java in a file named pa5.zip using Autolab. Do not include any other

files in the .zip file.

Grading
Your grade on this assignment will depend both on the quality of the tests and the quality of the
corrected Converter class.

Your code will first be graded by Autolab and then by the Professor. The grade you receive from
Autolab is the maximum grade that you can receive on the assignment.

Autolab Grading
Your code must compile (in Autolab, this will be indicated in the section on “Does your code
compile?”) and all class names and method signatures comply with the specifications (in Autolab, this
will be indicated in the section on “Do your class names, method signatures, etc. comply with the
specifications?”) for you to receive any points on this assignment.

Autolab will then grade your submission as follows:

Conformance to the Course Style Guide: 20 points (Partial Credit Possible)

Coverage/Quality of Your Tests: 30 points (Partial Credit Possible)

Correctness: 50 points (Partial Credit Possible)

Autolab will only provide limited hints because, at this point in the semester, you should not be using
Autolab to test and debug your code, you should be doing it yourself. For the coverage/quality of your
tests it will indicate which methods are not being adequately tested, but will not provide any details.
For the correctness of the debugged code, it will provide very little information.

Manual Grading
After the due date, the Professor may manually review your code. At this time, points may be deducted
for inelegant code, inappropriate variable names, bad comments, etc.

