
Fall 2020

CS149 – Introduction to Programming

Programming Assignment 2

TripSetter

Overview
The project manager at DukeDash who reviewed your work on the SpeedSetter is very happy and
wants you to create a new product called TripSetter that both adds capabilities and makes the code
more reusable.

As with SpeedSetter, TripSetter will be given the current speed in mi/hr and convert it to km/
hr. However, it will also be given the distance traveled during the current trip (in ft) and the duration of
the trip (in hr) and must calculate the average trip speed in both km/hr and mi/hr.

Specifications
The product must comply with the following specifications:

1. The main class must be named TripSetter.

2. When executed, command-line argument 0 must contain a String representation of

the current real-valued speed (in mi/hr), argument 1 must contain a String

representation of the real-valued trip distance (in ft), and argument 2 must contain a
String representation of the real-valued trip duration (in hr).

3. The product must have a class named Converter that performs all of the necessary

unit conversions. In particular, this class must have the following methods:

public static double feetToMiles(double feet)

public static double mphToKPH(double mph)

The purpose of each method should be apparent from its name.

4. The Converter class must have appropriate “class constants” that are used in its

methods.

5. The product must display the current speed in km/hr, the average speed (also called the
trip speed) in km/hr, and the average speed in mi/hr.

Existing Components
Dashboard

As you know from your earlier work on SpeedSetter, the Dashboard class contains the graphical

user interface for an in-vehicle electronic dashboard. In addition to the methods you have used in the
past, it also has the following method:

public static void setTripSpeed(double kph, double mph)

Displays the average trip speed in both km/hr and mi/hr.

Recommended Process
1. Read and understand the entire assignment.

2. Create a directory/folder (e.g., named pa2) that will hold all of the files for this assignment.

3. Copy Text.class and Dashboard.class into the directory you just created.

4. Implement the mphToKPH() method in the Converter class. (Hint: This should mostly

involve moving code from the SpeedSetter class to the Converter class.)

5. Implement the part of the TripSetter class that uses argument 0 and displays the speed in

mph.

6. Test the mphToKPH() method using the same values you used when testing the

SpeedSetter class.

7. By hand, convert the following values from feet to miles:

0.0, 1000.0, 1320.0, 5280.0, 2138958.0

8. Implement the feetToMiles() method in the Converter class.

9. Test the feetToMiles() method and debug it if necessary.

10. By hand, convert the following distances (in feet) and durations (in hr) to mi/hr:

Distance Duration

200.0 1.00

5280.0 1.00

5280.0 2.00

316800.0 1.25

11. Implement the part of the TripSetter class that uses arguments 1 and 2 and displays the

average speed in mph and kph.

12. Test this portion of the TripSetter class.

13. Submit your implementation of Converter.java and TripSetter.java in a file named

pa2.zip using Autolab. Do not include any other files in the .zip file.

Hints
1. Be careful about units. Specifically, pay attention to the units of the command-line arguments

and the units of the values to be displayed in the Dashboard.

2. If you have questions about the assignment, ask them before you start writing any code. In other
words, make sure you completely understand what you need to do before you start typing.

3. If you’re confused about the relationship between the TripSetter class (the main class) and

the Converter class (the utility class), you should look at the lecture on “Methods and

Modularity”, specifically the example with the AreaCalculator class (the main class) and

the Geometry class (the utility class). Remember, however, that the main() method in the

AreaCalculator uses the JMUConsole class to present information to the user while the

main() method in the TripSetter class must use the Dashboard class to present

information to the user.

Grading
Your code will first be graded by Autolab and then by the Professor. The grade you receive from
Autolab is the maximum grade that you can receive on the assignment.

Autolab Grading
Your code must compile (in Autolab, this will be indicated in the section on “Does your code
compile?”) and all class names and method signatures comply with the specifications (in Autolab, this
will be indicated in the section on “Do your class names, method signatures, etc. comply with the
specifications?”) for you to receive any points on this assignment.

Autolab will then grade your submission as follows:

Conformance to the Course Style Guide: 20 points (Partial Credit Possible)

Correctness: 80 points
Converter: 50% (Partial Credit Possible)

TripSetter: 50% (Partial Credit Possible)

Manual Grading
After the due date, the Professor may manually review your code. At this time, points may be deducted
for inelegant code, inappropriate variable names, bad comments, etc.

