
David Bernstein

Patterns
for

Beginning Programmers

With Examples in Java

Patterns
for Beginning Programmers

With Examples in Java

David Bernstein

James Madison University

© 2020 David Bernstein
Harrisonburg, VA

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/4.0/

or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Third Draft (Custom Edition) May 2020

Preface

My introductory programming courses always start with some loose def-
initions. I define an algorithm as an unambiguous process for solving a prob-

lem using a finite amount of resources, and a heuristic is a problem solving pro-
cess that is not guaranteed to be perfect/exact or finite. I then explain that algo-
rithms/heuristics written for a computer are commonly written in languages, called
(high-level) programming languages, that are easily understood by humans, unam-
biguous, and easily converted into machine-readable form. I then point out that an
algorithm/heuristic written in a programming language is a program (or code), and
the process of doing so is called programming (or coding), which is what they will
be studying for the remainder of the term.

As a practical matter, most introductory programming courses, mine included,
use a single, specific programming language and, not surprisingly, there is consider-
able debate about which language is best for teaching beginning programmers (or
whether it matters). However, there is, generally, consensus about the role that the
programming language plays and the goals of such courses. Indeed, most introduc-
tory programming courses make claims like the following:

• The concepts covered using the particular programming language selected for
the course are applicable across a wide variety of other programming lan-
guages.

• The course teaches algorithmic thinking more than the syntax of the lan-
guage(s) being used.

In my experience, these claims are not completely justified. While the first is
often true from a teaching perspective, it is not true from a learning perspective. In
other words, students have enormous trouble taking what they have learned in one
language and applying it in another. The second is an honest description of what
the instructor wants to cover, but is a goal that is rarely achieved.

In the worst cases, instructors in introductory programming courses spend all of
their time teaching students syntax and tools, and leave it to the students to figure
out how to solve problems. Using concepts from Bloom’s taxonomy of the cognitive

iii

iv

domain, such courses only teach “remembering” and “understanding”, and expect
students to “analyze”, “evaluate”, “apply” and “create” on their own.

In the better cases, instructors in introductory programming courses expose
students to well-written code containing good solutions to problems and explain
why the code is good. However, they only hope that the students will internalize
these solutions and be able to apply them in other contexts; they do not explicitly
teach them to do so. In other words, these courses only teach “remembering”,
“understanding”, “analyzing” and “evaluating”, but not “applying” and “creating”.

In the best cases, instructors in introductory programming courses teach “ap-
plying” and “creating” as well. That is, they teach problem solving as well as
programming. This book is designed to make it easier to do so.

Teaching Problem Solving with Patterns

I have had colleagues over the years who have argued that problem solving can’t be
taught, that students either have the ability or they do not. I (and others) disagree;
I believe problem solving can be taught in the following way:

• Demonstrate that it is possible to classify problems;

• Help them learn how to evaluate the quality of different solutions;

• Provide good general solutions for many classes of problems;

• Help them learn how to classify new problems; and

• Help them learn how to adapt an existing general solution to a new specific
problem.

This is the essence of teaching problem solving using patterns, an approach based on
the work of Christopher Alexander (i.e., the so-called pattern language movement
in architecture).

The teaching of design and problem solving using patterns involves the presen-
tation of:

1. An archetypal/canonical problem;

2. One or more inferior solutions to the problem;

3. A superior solution to the problem (i.e., the pattern);

4. Other problems to which the superior solution can be applied (with minor
modification); and

v

5. Ways to determine that a particular pattern is an appropriate solution to a
particular problem (i.e., identifying the class a problem belongs to).

In the end, this approach provides students with two things: a library of solutions
that they can use, and an understanding of how to add to that library themselves.
When faced with a new problem, their job is really most frequently to recognize
that they already have a solution. Less frequently, their job is to recognize that
they don’t have a solution readily available and understand that they must develop
alternative solutions, evaluate those solutions, and select the best alternative.

Patterns for Beginning Programmers

This approach has been used successfully (under various names) in upper-level
courses in software engineering and other engineering disciplines for many years.
Unfortunately, it has not yet found its way into introductory programming courses.
This book is an attempt to remedy that shortcoming.

Two things distinguish programming patterns from other kinds of patterns: the
problem domain (i.e., programming) and the level of abstraction. Programming
patterns are at a higher level of abstraction than idioms because the concepts are
not specific to a language (family). In other words, a programming pattern is not
a “turn of phrase” (i.e., idiom) in a particular programming language. Instead,
it is a generic solution to a problem that might arise in many languages; it is a
way of thinking programmatically. Programming patterns are at a lower level of
abstraction than design patterns and architectural styles. In other words, the use of
a programming pattern leads to the creation of a small fragment of code that will
be a part of a larger system, whereas the use of a design pattern or architectural
style leads to the creation of a description of the interactions between the entities
in a large system.

Unlike books on design patterns and architectural styles used in upper-level
courses, this book does not stand alone. Instead, it is a supplement to the traditional
textbooks used in introductory programming courses. A traditional textbook helps
in the teaching of “remembering”, “understanding”, “analyzing” and “evaluating”.
This book helps in the teaching of “applying” and “creating”. It assumes that the
reader already knows the syntax of the statements in the fragments (which can be
learned using a standard textbook) and focuses instead on the reasoning process
that leads to the fragments.

Questions of Style

Teaching with patterns necessarily involves evaluating different solutions to the same
problem, and these solutions can be evaluated using a variety of different criteria.

vi

This book attempts to focus on the criteria that are related to the solution without
regard to issues of style. For example, a method to identify the maximum of two
numbers could be implemented in the following different ways. In the first, an
intermediate variable and default initialization is used.

public static int max(int a, int b) {
int result;

result = b;
if (a > b) result = a;

return result;
}

In the second, an intermediate variable is used, but the two cases are handled
explicitly (i.e., there is an else block as well as an if block).

public static int max(int a, int b) {
int result;

if (a > b) result = a;
else result = b;

return result;
}

In the third, there are multiple return statements and no need for an intermediate
variable.

public static int max(int a, int b) {
if (a > b) return a;
else return b;

}

Good arguments can be made for all three of these solutions, and the relative merits
may vary with the experience of the programmer. However, the differences are more
about the programming of the solution than they are about the solution itself. That
is, they are stylistic differences.

Similarly, given a max()method, one might implement a min()method a number
of different ways. One might, for example, argue that the following implementation
is preferred because it is consistent with the implementation of the max() (assuming
the third implementation was chosen).

vii

public static int min(int a, int b) {
if (a < b) return a;
else return b;

}

Alternatively, one might argue that the following implementation is preferred be-
cause it involves less code duplication.

public static int min(int a, int b) {
return -max(-a, -b);

}

Again, these arguments are more about the programming of the solution (i.e., the
style) than they are about the solution itself.

As a final example, given max() and min() methods, one might implement a
clamp() method in different ways. One might argue that consistency dictates the
following implementation:

public static int clamp(int x, int lower, int upper) {
if (x < lower) return lower;
if (x > upper) return upper;
return x;

}

or one might argue that re-use dictates the following implementation:

public static int clamp(int x, int lower, int upper) {
return max(lower, min(upper, x));

}

To reiterate, this book attempts to avoid the use of stylistic criteria when eval-
uating different solutions. In other words, it attempts to compare solutions that
differ in more than just their style.

The Organization of this Book
The patterns in this book are organized according to the topics that are covered
in traditional introductory programming textbooks. Part I considers solutions to
problems that only involve arithmetic operators (and related topics). So, an un-
derstanding of the declaration of variable, assignment statements, and arithmetic
operators is all that is needed to consider the problems in Part I. Part II considers

viii

solutions to problems that require the use of logical operators, relational operators,
conditions, and methods. After that, Part III considers patterns that require the
use of loops, arrays, and (rudimentary) input/output. Next, Part IV covers prob-
lems and solutions that require the use of array members (especially the length
attribute) and arrays of arrays (sometimes, casually called multi-dimensional ar-
rays) and Part V covers problems and solutions involving String objects. Finally,
Part VI considers patterns involving the use of references.

In many cases, the patterns build on each other. So, with a few exceptions,
the parts of the book need to be considered in order. Unfortunately, since different
introductory programming courses/textbooks cover these topics in different orders,
it may be necessary to gain a cursory understanding of some chapters, and then
come back to them again later. For example, some courses/textbooks cover methods
before arrays (as in this book) while others cover them in the opposite order. Hence,
it may be necessary to gloss over some of the patterns in Part III until after methods
have been covered.

Every chapter includes a motivation (i.e., a situation in which the problem be-
ing considered arises), the pattern (i.e., the solution to the problem), and exam-
ples. Many chapters also include one or more warnings, usually about not over-
generalizing. Some chapters also include a “look ahead” at where the pattern might
appear in later courses. The material in those sections is often more advanced and
can be omitted (i.e., it is not required for subsequent chapters).

Acknowledgments
My wife writes well. I do not. Despite her best efforts to make this book readable,
which I gratefully acknowledge, she has failed miserably. The fault lies with me,
however, so please don’t blame her. I’m also somewhat chagrined that she caught
several technical mistakes even though she is not a programmer. (I can’t mention
her by name because we are both on the faculty at JMU and I don’t tell my students
her name. I don’t want them to send her pitying notes.)

I would also like to acknowledge the contribution of one of my colleagues at JMU,
Chris Mayfield. His careful reading of an early draft was indispensable, and resulted
in many important corrections and improvements. I can’t thank him enough.

Contents

Contents ix

List of Figures xvii

List of Tables xix

I Patterns Requiring Knowledge of Types, Variables, and
Arithmetic Operators 1

1 Swapping 5
1.1 Motivation . 5
1.2 Review . 5
1.3 Thinking About The Problem . 7
1.4 The Pattern . 7
1.5 Examples . 8
1.6 A Warning . 9

2 Updating 11
2.1 Motivation . 11
2.2 Review . 11
2.3 Thinking About The Problem . 12
2.4 The Pattern . 13
2.5 Examples . 13
2.6 A Warning . 15

3 Digit Manipulation 17
3.1 Motivation . 17
3.2 Review . 17
3.3 Thinking About The Problem . 18
3.4 The Pattern . 19
3.5 Examples . 19

ix

x CONTENTS

3.6 A Warning . 20
3.7 Looking Ahead . 20

4 Arithmetic on the Circle 21
4.1 Motivation . 21
4.2 Review . 21
4.3 Thinking About The Problem . 22
4.4 The Pattern . 23
4.5 Examples . 24

5 Truncation 27
5.1 Motivation . 27
5.2 Review . 27
5.3 Thinking About the Problem . 28
5.4 The Pattern . 28
5.5 Examples . 28
5.6 Some Warnings . 29

II Patterns Requiring Knowledge of Logical and Relational
Operators, Conditions, and Methods 31

6 Indicators 35
6.1 Motivation . 35
6.2 Thinking About The Problem . 36
6.3 The Pattern . 36
6.4 Examples . 37
6.5 Some Warnings . 38

7 Indicator Methods 41
7.1 Motivation . 41
7.2 Review . 41
7.3 The Pattern . 42
7.4 Examples . 43
7.5 Some Warnings . 44
7.6 Looking Ahead . 45

8 Rounding 49
8.1 Motivation . 49
8.2 Review . 49
8.3 Thinking About The Problem . 49
8.4 The Pattern . 50
8.5 Examples . 51

CONTENTS xi

8.6 A Warning . 51
8.7 Looking Ahead . 51

9 Starts and Completions 53
9.1 Motivation . 53
9.2 Thinking About the Problem . 53
9.3 The Pattern . 54
9.4 Examples . 55
9.5 Looking Ahead . 55

10 Bit Flags 57
10.1 Motivation . 57
10.2 Review . 57
10.3 Thinking About The Problem . 58
10.4 The Pattern . 58
10.5 Examples . 60
10.6 Some Warnings . 61
10.7 Looking Ahead . 62

11 Digit Counting 65
11.1 Motivation . 65
11.2 Review . 65
11.3 Thinking About The Problem . 66
11.4 The Pattern . 66
11.5 Examples . 66
11.6 Looking Ahead . 67
11.7 A Warning . 68

III Patterns Requiring Knowledge of Loops, Arrays and I/O 69

12 Reprompting 73
12.1 Motivation . 73
12.2 Review . 74
12.3 Thinking About The Problem . 75
12.4 The Pattern . 75
12.5 Examples . 75

13 Accumulators 77
13.1 Motivation . 77
13.2 Review . 77
13.3 Thinking About The Problem . 78
13.4 The Pattern . 78

xii CONTENTS

13.5 Examples . 79
13.6 A Warning . 81
13.7 Looking Ahead . 82

14 Accumulator Arrays 85
14.1 Motivation . 85
14.2 Review . 85
14.3 Thinking About The Problem . 86
14.4 The Pattern . 87
14.5 Examples . 87

15 Lookup Arrays 89
15.1 Motivation . 89
15.2 Review . 89
15.3 The Pattern . 90
15.4 Examples . 91
15.5 Looking Ahead . 94

16 Interval Membership 95
16.1 Motivation . 95
16.2 Review . 95
16.3 Thinking About The Problem . 96
16.4 The Pattern . 97
16.5 Examples . 98
16.6 Some Warnings . 98
16.7 Looking Ahead . 99

17 Conformal Arrays 101
17.1 Motivation . 101
17.2 Review . 101
17.3 Thinking About The Problem . 102
17.4 The Pattern . 103
17.5 Examples . 103
17.6 A Warning . 104
17.7 Looking Ahead . 105

18 Segmented Arrays 107
18.1 Motivation . 107
18.2 Review . 107
18.3 Thinking About The Problem . 108
18.4 The Pattern . 109
18.5 Examples . 110

CONTENTS xiii

18.6 Looking Ahead . 111

IV Patterns Requiring Advanced Knowledge of Arrays and Ar-
rays of Arrays 113

19 Subarrays 117
19.1 Motivation . 117
19.2 Review . 117
19.3 Thinking About The Problem . 118
19.4 The Pattern . 118
19.5 Examples . 119
19.6 A Warning . 120

20 Neighborhoods 121
20.1 Motivation . 121
20.2 Review . 122
20.3 Thinking About The Problem . 122
20.4 The Pattern . 123
20.5 Examples . 123
20.6 A Warning . 126

V Patterns Requiring Knowledge of String Objects 127

21 Centering 131
21.1 Motivation . 131
21.2 Review . 131
21.3 Thinking About The Problem . 132
21.4 The Pattern . 132
21.5 Examples . 133
21.6 Some Warnings . 135

22 Delimiting Strings 139
22.1 Motivation . 139
22.2 Review . 139
22.3 Thinking About The Problem . 140
22.4 The Pattern . 141
22.5 Examples . 144

23 Dynamic Formatting 145
23.1 Motivation . 145
23.2 Review . 145

xiv CONTENTS

23.3 Thinking About The Problem . 146
23.4 The Pattern . 146
23.5 Examples . 147

24 Pluralization 149
24.1 Motivation . 149
24.2 Review . 149
24.3 Thinking About The Problem . 150
24.4 The Pattern . 150
24.5 Examples . 151

VI Patterns Requiring Knowledge of References 153

25 Chained Mutators 157
25.1 Motivation . 157
25.2 Review . 158
25.3 Thinking About The Problem . 158
25.4 The Pattern . 159
25.5 An Example . 159
25.6 A Warning . 161

26 Outbound Parameters 163
26.1 Motivation . 163
26.2 Review . 163
26.3 Thinking About The Problem . 164
26.4 The Pattern . 165
26.5 Examples . 166
26.6 A Warning . 170

27 Missing Values 171
27.1 Motivation . 171
27.2 Review . 171
27.3 Thinking About The Problem . 172
27.4 The Pattern . 172
27.5 Examples . 173
27.6 A Warning . 175
27.7 Looking Ahead . 175

28 Checklists 177
28.1 Motivation . 177
28.2 Review . 177
28.3 Thinking About The Problem . 178

CONTENTS xv

28.4 The Pattern . 179
28.5 Examples . 180
28.6 Looking Ahead . 183

Index 185

List of Figures

1.1 A Visualization of Two Assignment Statements 6
1.2 A Defective Swapping Algorithm . 7
1.3 A Visualization of the Swapping Pattern 8
1.4 Steps in a Swap . 9

2.1 An Example of Updating . 14

3.1 Decimal Representation of an Integer . 18

4.1 The Traditional Number Line . 22
4.2 Addition on a Line . 22
4.3 Subtraction on a Line . 22
4.4 Numbers on a Circle . 23
4.5 Addition and Subtraction on a Circle . 23
4.6 An Analog Military Clock . 25

10.1 Binary Representations of an Integer . 58

15.1 The Correspondence between Old and New Exit Numbers 90

17.1 An Illustration of Conformal Arrays . 103
17.2 An Example of Keys and Values in Conformal Arrays 106

18.1 The Result of Concatenating two Arrays 108
18.2 The Result of Interleaving two Arrays 109
18.3 Conceptualizing the Interleaved Array of Weights and Heights 110

19.1 The Parameters for the Second Quarter of a Year of Monthly Data . . . 119

20.1 A Neighborhood of Size 3 around Element 4 121
20.2 A 5× 5 Neighborhood around Element (3, 3) 122

21.1 Centering in One Dimension . 134

xvii

xviii LIST OF FIGURES

21.2 Centering in Two Dimensions . 135

List of Tables

16.1 U.S. Tax Brackets for Single Taxpayers in 2017 96

17.1 U.S. Macroeconomic Data for 2018 (Not Seasonally Adjusted) 102

xix

Part I

Patterns Requiring Knowledge
of Types, Variables, and
Arithmetic Operators

1

3

Part I contains programming patterns that require an understanding of data types,
variables and identifiers, the declaration of variables and a basic understanding
of memory, the assignment operator and its impact on memory, and arithmetic
operators. Many of the patterns in this part of the book make extensive use of integer
arithmetic. Specifically, this part of the book contains the following programming
patterns:

Swapping. A solution to the problem of swapping the contents of two variables (of
the same type).

Updating. Solutions to the problem of how to update a variable.

Digit Manipulation. Solutions to the problems of extracting and deleting the
digits of an integer (from both the right and left sides).

Arithmetic on the Circle. A solution to the problem of performing basic arith-
metic operations on quantities that repeat themselves (e.g., days of the week,
months of the year).

Truncation. Solutions to the problem of truncating an integer to a particular digit
(i.e., power of 10).

The patterns in this part of the book arise so frequently that they are second
nature to experienced programmers, which can be quite annoying for beginning
programmers, who have to think about them every time they make use of them. In
and of itself, this observation is evidence for the importance of studying both these
patterns and those in the other parts of this book.

CHAPTER 1
Swapping

Programs commonly need to swap the contents of two variables. While this
probably seems simple at first glance, it’s actually a little more complicated

than it seems.

1.1 Motivation

Suppose, for example, that you are writing a fantasy role playing game. In such
games, players commonly acquire items of various kinds (e.g., weapons, spells, gold,
food). When they acquire such an item, a representation of it (e.g., a 'T' character
for a teleportation spell) is assigned to a variable of appropriate type (e.g., a char
variable named spell). As the game progresses, two players meet and realize that it
would benefit both of them to swap their spells. This chapter considers a sequence
of statements that can be used to solve this problem.

1.2 Review

There are a couple of things to recall in this regard. First, remember that the
assignment operator (i.e., the = operator), stores the right side operand in the mem-
ory location identified by the left side operand. So, the statements in the following
fragment:

char swordOfAlice, swordOfBetty;

swordOfAlice = 'C'; // Caladbolg
swordOfBetty = 'D'; // Durendal

5

6 CHAPTER 1. SWAPPING

swordOfAlice = 'C';

swordOfAlice

swordOfBetty = 'D';

swordOfBetty

D

C

Figure 1.1: A Visualization of Two Assignment Statements

can be visualized as in Figure 1.1. The first assignment statement stores the binary
representation of the character 'C' (i.e., 01000011 using an ASCII representation)
into the memory location identified by swordOfAlice and the second assignment
statement stores the binary representation of the character 'D' (i.e., 01000100 using
an ASCII representation) into the memory location identified by swordOfAlice.

Second, remember that a variable can hold only one “thing” (either a value or a
reference, depending on the type of the variable). So, the statements in the following
fragment:

swordOfAlice = swordOfBetty;
swordOfBetty = swordOfAlice;

can be visualized as in Figure 1.2. The first assignment statement stores the cur-
rent contents1 of swordOfBetty (i.e., a 'D') in the memory location identified by
swordOfAlice. The second assignment statement stores the current contents of
swordOfAlice (i.e., now a 'D') in the memory location identified by swordOfBetty.
In other words, these statements didn’t swap the contents of the two variables at all.
Instead, they memory locations identified by both variables now contain a binary
representation of the character 'D'.

1The use of the plural noun “contents” rather than “content” may be a little confusing to some
readers. Though a variable holds a single thing, it is a kind of container, and we normally talk
about the “contents” of a container.

1.3. THINKING ABOUT THE PROBLEM 7

swordOfAlice = swordOfBetty;

swordOfAlice

swordOfBetty = swordOfAlice;

D
swordOfBetty

Figure 1.2: A Defective Swapping Algorithm

1.3 Thinking About The Problem

One way to think about solving the swapping problem is to imagine a situation in
which you have Caladbolg in your left hand and Durendal in your right hand and
you now want to swap the two. Since both of your hands are already full, there’s no
way for you to make any progress. To make progress, you need a place where you
can temporarily store one of the swords. For example, you can place Caladbolg on
a table, move Durendal from your right hand to your left hand, and then pick up
Caladbolg with your right hand.

Note that this situation is not completely analogous to the way assignment
works because the assignment operator replaces the current contents of the memory
identified by a variable with a copy of the right side operand. However, it does
provide the foundation of a pattern that can be used to solve the swapping problem.

1.4 The Pattern

Suppose you want to swap the contents of two memory locations identified by a and
b (or, more succinctly, suppose you want to swap the contents of two variables, a and
b). Before starting, you need a memory location that can be used to temporarily
store the contents of either a or b. Calling that variable temp, the swapping pattern
can then be implemented as follows:

temp = a;
a = b;
b = temp;

The process can be visualized as in Figure 1.3. In step 1, the contents of a is
temporarily stored in the memory location identified by temp. In step 2, the contents
of b is stored in the memory location identified by a. Finally, in step 3, the contents
of temp is stored in the memory location identified by b.

8 CHAPTER 1. SWAPPING

a

b

temp

Step 1

Step 2

Step 3

Figure 1.3: A Visualization of the Swapping Pattern

1.5 Examples

It’s instructive to use the pattern to swap swords, carefully illustrating what happens
step by step. The statements needed to conduct the swap are contained in the
following fragment:

temp = swordOfAlice;
swordOfAlice = swordOfBetty;
swordOfBetty = temp;

Before the swap, the memory location identified by swordOfAlice contains the
character 'C', the memory location identified by swordOfBetty contains the char-
acter 'D', and the memory location identified by temp doesn’t contain anything
(or contains “garbage”, depending on your perspective). This is illustrated in Fig-
ure 1.4a.

In step 1, the contents of swordOfAlice is assigned to temp. Hence, both temp
and swordOfAlice now contain a 'C'. The assignment statement and its result are
illustrated in Figure 1.4b. In step 2, the contents of swordOfBetty is assigned to
swordOfAlice. Hence, both swordOfAlice and swordOfBetty now contain a 'D'.
The assignment statement and its result are illustrated in Figure 1.4c. In step 3,
the contents of temp is assigned to swordOfBetty. Hence, both swordOfBetty and
temp now contain a 'C'. The assignment statement and its result are illustrated in
Figure 1.4d. The result is that, as desired, swordOfAlice now contains a 'D' and
swordOfBetty now contains a 'C'.

1.6. A WARNING 9

swordOfAlice

D
swordOfBetty

C

temp

temp = swordOfAlice;

swordOfAlice

D
swordOfBetty

C

temp

C

swordOfAlice = swordOfBetty;

swordOfAlice

D
swordOfBetty

temp

C

D
swordOfAlice

swordOfBetty = temp;

swordOfBetty

temp

C

D

C

a. Before the Swap b. Step 1 of the Swap

c. Step 2 of the Swap d. Step 3 of the Swap

Figure 1.4: Steps in a Swap

1.6 A Warning
At this point, if you know about methods, you might be tempted to write a swap()
method so that you don’t have to duplicate this code every time you want to swap the
contents of two variables. However, though your motivations are to be applauded,
it would be ill-advised to do so.

It turns out that there are different ways to pass parameters to methods, and the
approach used in a particular language has a dramatic impact on the way in which
one should implement a swap() method (and, indeed, whether it’s even possible to
do so). So, until you fully understand parameter passing, you may have duplicate
code in your programs. That said, be careful — it’s easy to make subtle mistakes
when you cut and paste code fragments and then rename variables.

CHAPTER 2
Updating

Every algorithm of any consequence makes extensive use of arithmetic op-
erators, whether it is executed by hand or realized as a computer program and

executed by a computer. However, the two are different in one very important way.
Calculations that are performed by hand tend to progress down the page, using
more and more memory (i.e., paper) as they proceed. Programs, on the other hand,
tend to declare a small number of variables, assign values to them, and then assign
updated values to them. This chapter considers different ways of updating variables.

2.1 Motivation

Suppose you are writing a program that keeps track of the age of your favorite
relative. You might declare an int variable named age and assign your favorite
relative’s current age to that variable.

Now, suppose you need to perform a calculation involving that relative’s age
next year. Obviously, you know that their age will be one greater than it is now.
But, should you create another variable for that value, or should you just update
the value of age? In some situations you need to do the former, but, suppose what
you need to do is update the existing variable. It turns out that there are a variety
of different ways that you can proceed..

2.2 Review

One approach to updating that you may have already seen involves the increment
and decrement operators, ++ and --, which increase/decrease their operands by one.
So, for example, you have probably seen something like the following:

11

12 CHAPTER 2. UPDATING

int age;

// Initialize the age to 0 at birth
age = 0;

// Increase the age by 1 on the first birthday
age++;

What you may not know is that, in some ways, this is just one (particularly simple)
way of solving a specific updating problem (i.e., in which the variable is increased
or decreased by exactly 1).

2.3 Thinking About The Problem
The same result can be achieved in a slightly more complicated but, ultimately,
more flexible way. To understand how, first remember that the assignment operator
takes the result of evaluating the expression on its right and puts it in the memory
location identified by the variable on its left. This is done three different times in
the following example:

int currentAge, increment, initialAge;

initialAge = 0;
increment = 1;
currentAge = initialAge + increment;

These three assignment statements are particularly easy to understand because
the expression on the right side of the assignment operator does not involve the
variable on the left side. However nothing about the syntax of assignment statements
prevents this from being the case. For example, consider the following statement:

// Add age and 1 and assign the result to age
age = age + 1;

This statement first adds the value in the memory location identified by age and
the value 1 and then assigns the result to the memory location identified by age.1
In other words, it does the same thing as ++age.

1This sentence is worded very carefully, and it is important to understand why. Note that it
does not say “it adds the value 1 to the value in the memory location identified by age”. It is
the assignment operator, not the addition operator, that changes the value in the memory location
identified by age.

2.4. THE PATTERN 13

To the non-programmer this statement looks like a mistake because the non-
programmer thinks that it says “age equals age plus one”, which clearly can’t be
true. However, that’s not what it says at all. It actually says “add the value in
the memory location identified by age and the value one, and put the result in the
memory location identified by age”.

2.4 The Pattern

This idea can be generalized in a variety of ways by recognizing that the important
pattern is the presence of the left-side operand on the right side of the assignment
operator. In a fairly abstract way, the pattern can be written as follows:

value = value operator adjustment

where value denotes the variable being updated, = denotes the assignment operator,
operator denotes a binary operator, and adjustment represents the “amount” of
the adjustment. Since operator has higher precedence than =, it is evaluated first.
Then, the result of that evaluation (which involves value) is assigned to value.

This pattern is so common, that experienced programmers neither think about
it themselves nor think to mention it to beginning programmers, but it’s not as
obvious as everyone makes it out to be.

2.5 Examples

You will encounter many situations in which you must keep track of something that
is changing, but, regardless of its value, you want to use the same name/identifier.
In the example above, you needed to keep track of a relative’s age over time, but
you only needed their current age. In another program you may need to keep track
of someone’s bank balance as it changes over time, but you only need the current
balance. In still another program, you may need to keep track of the elevation of a
highway as it changes over space, but you only need the elevation at one location.

A Gradebook Program

Suppose you have to write a program that manages the grades that a student receives
in a course. After the initial grade is assigned, you must deduct the late penalty
(which may, of course, be zero). You can implement this as follows:

14 CHAPTER 2. UPDATING

price = price - 0.25*price;{
10.0

{
40.0{

40.0{
30.0

Figure 2.1: An Example of Updating

// Assign the initial grade
grade = 85;

// Reduce a grade by a late penalty
grade = grade - latePenalty;

A Retail Sales Program

Now, suppose you have to write a program that offers frequent buyers a 25% discount
when they check out. You could solve this problem as follows:

// Offer a 25% discount
price = price - 0.25*price;

Because the * operator has the highest precedence, it is evaluated first.2 Then,
the result of the multiplication operation is subtracted from the price (without
changing the contents of any of the variables). Finally, the result of the subtraction
operation is assigned to the variable named price.

Suppose that price initially contains the value 40.0. Then, this statement can
be visualized as in Figure 2.1.

A Banking Program

As one more example, suppose you have to write a program that updates an account
holder’s bank balance. Assuming an interest rate of 5%, the new balance will equal
the old balance plus 5% if the old balance You could solve this problem as you did
for the retail sales program but you could also do a little algebra “off line”, observe

2Remember, you can also use parentheses to influence the order in which operators are evalu-
ated. For example, in this case, one could avoid any confusion by writing

price = price - (0.25 * price);
This is a question of style and doesn’t change the pattern.

2.6. A WARNING 15

that balance + 0.05 * balance is equivalent to 1.05 * balance, and implement
the solution as follows:

// Earn 5% interest
balance = 1.05 * balance;

2.6 A Warning
This pattern is so common that many programming languages include compound
assignment operators to make it even easier to use. Such operators consist of mul-
tiple characters: the symbol for the arithmetic operator followed immediately by
the symbol for the assignment operator. Note that, since a compound operator is
an operator, it cannot contain white space (e.g., spaces, tabs, carriage returns, line
feeds) between the characters. For example, the grading and banking examples can
be written using compound assignment operators as follows:

// Reduce a grade by a late penalty
grade -= latePenalty;

// Earn 5% interest
balance *= 1.05;

Beginning programmers need to be a little careful when using compound assign-
ment operators. To see why, consider the following two statements:

i =+ 1;

j =- 1;

While they look like they use compound assignment operators, they do not — com-
pound assignment operators end with the character that is used for the assignment
operator, they don’t start with it. That is, += is a compound assignment operator,
but =+ is not.

However, both of these statements are syntactically valid and, hence, will com-
pile. This is because they use the assignment operator (i.e., =) followed be the unary
“positive” (i.e., +) or “negative” (i.e., -) operators, without any white space between
them. That is, they are the same as the following two statements:

i = +1;

j = -1;

just with different spacing.

CHAPTER 3
Digit Manipulation

In most programming languages, integer types (e.g., int in Java) are atomic.
That is, they do not have constituent parts.1 However, there are many situations

in which one needs to manipulate the individual digits of an integer value. This
chapter considers different ways of doing so.

3.1 Motivation

Suppose you are writing a program for a credit card company that has accounts
of various kinds. All account numbers are nine digits long, they never start with
a 0, the left-most three digits represent the issuing bank, and the right-most digit
indicates the type of account (e.g., debit, credit, crypto currency).

Because account numbers are nine digits long, and the maximum int value is
231−1 (or 2, 147, 483, 647), you decide to represent each account number as an int.
However, you realize that this means that you will need to extract digits from the
account number, both from the left and from the right. In other words, you need
to solve some digit manipulation problems.

3.2 Review

Recall that in a decimal (i.e., base 10) representation of a number, each digit is
multiplied by a power of 10. The right-most digit is multiplied by 100 (i.e., 1, and
hence is often called the “ones place”), the second digit from the right is multiplied
by 101 (i.e., 10, and hence is often called the “tens place”), and, in general, the

1Of course, we now know that an atom does have constituent parts. The term “atomic” is used
for historical reasons.

17

18 CHAPTER 3. DIGIT MANIPULATION

7198

10
3
 10

2
 10

1
 10

0

7 1000 + 1 100 + 9 10 + 8 1

Figure 3.1: Decimal Representation of an Integer

digit in position n (counting from the right, starting at 0)2 This is illustrated in
Figure 3.1. is multiplied by 10n.

3.3 Thinking About The Problem

Since each digit in a base 10 representation of an int corresponds to a power of
10, you should now be thinking, at least at an intuitive level, that solutions to digit
manipulation problems will involve the powers of 10. The other thing that should be
clear, again at an intuitive level, is that solutions to the digit manipulation problem
will involve one or more of the arithmetic operations that can be performed on int
values.

You can rule out addition and multiplication almost immediately, since both
operations make the number larger. Subtraction might work, but it doesn’t get you
very far. Suppose, for example, you wanted to get the right-most digit of 7198.
You’d need to subtract 7190, which requires knowledge of the three left-most digits
(multiplied by 10). Similarly, to get the left-most digit, you’d need to subtract 198,
the three right-most digits, and then divide by 1000. The two operations left to
consider are integer division and the remainder after integer division.

If you divide 7198 by 10 (using integer division) you are left with 719. In other
words, you have dropped the right-most digit and/or extracted the left-most three
digits. Similarly, if you divide 7198 by 100 you are left with 71. In other words, you
have dropped the right-most two digits and/or extracted the left-most two digits.
This is clearly progress.

You can also make progress with the remainder after integer division. If you
divide 7198 by 10, the remainder is 8. In other words, you have dropped the left-
most three digits and/or extracted the right-most digit. Similarly, if you divide
7198 by 100, the remainder is 98. That is, you have dropped the left-most two
digits and/or extracted the right-most two digits.

2You could, alternatively, start counting at 1 and multiply by 10n−1.

3.4. THE PATTERN 19

3.4 The Pattern

One aspect of the pattern should now be relatively easy to see, the operation. To
drop from the right or extract from the left you must use integer division. On
the other hand, to extract from the right or drop from the left you must use the
remainder after integer division.

The simpler cases involve counting from the right, and can be handled as follows:

• To drop the n right-most digits from a number you must divide by 10n.

• To extract the n right-most digits from a number you must find the remainder
after dividing by 10n.

Extracting digits on the left and dropping digits on the left are both slightly more
complicated because these operations require knowledge of the number of digits in
the number as well as the number of digits to extract or drop. Letting N denote
the number of digits in the number, the pattern can be completed as follows:

• To extract the n left-most digits from a number you must divide by 10N−n.

• To drop the n left-most digits from a number you must find the remainder
after dividing by 10N−n.

3.5 Examples

Returning to the credit card example, suppose the account number is 412831758. To
extract the card type from the account number you need to extract the right-most
digit. This means that you must find the remainder after dividing by 101 (or 10).
You can accomplish this as follows:

cardNumber = 412831758;
accountType = cardNumber % 10; // Extract right-most 1 digit

To extract the issuing bank number you must extract the left-most three digits of
a nine digit number. This means that you must divide by 109−3, or 106, or 1000000.
This can be accomplished as follows:

cardNumber = 412831758;
issuer = cardNumber / 1000000; // Extract left-most 3 (of 9) digits

20 CHAPTER 3. DIGIT MANIPULATION

The part of the account number that identifies the account holder consists of the
remaining digits. To get this part of the account number you must first drop the
left-most three digits (i.e., you must find the remainder after dividing by 109−3).
Then, you must drop the right-most digit of the result (i.e., you must divide the
result by 101). This can be accomplished as follows:

cardNumber = 412831758;
holder = (cardNumber % 1000000) / 10;

3.6 A Warning
You need to be especially careful about the order in which you perform operations
when using this pattern in a repeated fashion because they change the number of
digits, N .

For example, when finding the account holder in the example above you had
to first take the remainder after dividing by 1000000 and then divide by 10. Had
you divided by 10 first, the intermediate value would have been 41283175 and the
remainder after dividing by 1000000 would then have been 283175 instead of 83175.

Reversing the order results in an incorrect solution because the intermediate
value 41283175 only has 8 digits, not 9. So, to extract the right-most 3 digits you
would have to take the remainder after dividing by 108−3 or (100000).

3.7 Looking Ahead
If you take a course on systems programming, you will probably encounter the
following topics related to digit manipulation.

Generalizing the Pattern

For reasons that may not be apparent now, hexadecimal (i.e., base 16) frequently
arises in computing. Fortunately, this same pattern can be used with other bases.
All that is needed is to replace 10 with the desired base, b.

Bit Shifting

For reasons that hopefully are already apparent to you, binary (i.e., base 2) is also
very important in computing Many programming languages (including Java) include
the >> and << operators to shift the binary representation of an integer value to the
right or left a given number of places. These lower-level operators are more relevant
in a systems programming course than an applications programming course, but
will be touched upon briefly at the end of Chapter 18 on segmented/packed arrays.

CHAPTER 4
Arithmetic on the Circle

When children are first taught to count, they are introduced to the
concept of a number line. That approach then subconsciously influences

the way people think about arithmetic throughout their lives. However, one can
also perform arithmetic on a number circle, which turns out to be a good way to
solve an enormous number of programming problems.

4.1 Motivation

Quite frequently, values can be increased without bound. For example, if you start at
$3.00 and someone keeps giving you dollar bills, you will have more and more dollar
bills (subject, of course, to tax laws and the like). However, in some cases, values
don’t keep increasing, they “repeat” (for lack of a better word). For example, if you
start at three o’clock (i.e., 3:00) and keep increasing the hour of the day, you will
(in fairly short order) get back to three o’clock (ignoring the AM/PM distinction,
for the moment). To handle these kinds of situations, you need to re-think addition
and subtraction.

4.2 Review

A number line is usually represented as a line with arrow heads at both ends (indi-
cating that it continues forever in both directions) and labeled tick marks (indicating
the integers). A traditional number line increases to the right and decreases to the
left. An example, focusing on the first twelve non-negative integers, is illustrated in
Figure 4.1.

Addition on the number line involves moving to the right from a particular tick
mark. So, for example, suppose you are interested in the quantity x+ 2. Then, you

21

22 CHAPTER 4. ARITHMETIC ON THE CIRCLE

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.1: The Traditional Number Line

 x x+2

Figure 4.2: Addition on a Line

x-1 x

Figure 4.3: Subtraction on a Line

locate x on the number line and move 2 tick marks to the right. This is illustrated
in Figure 4.2.

Similarly, subtraction on the number line involves moving to the left from a
particular tick mark. So, for example, suppose you are interested in the quantity
x−1. Then, you locate x on the number line and move 1 tick mark to the left. This
is illustrated in Figure 4.3.

So, if you start with $3.00 and someone gives you fifteen more dollars, you will
have $18.00. On the other hand, if you start with $3.00 and spend $5.00, you will
have $-2.00 (i.e., you will be $2.00 in debt). Does this sound like elementary school?
Good, it should.

4.3 Thinking About The Problem

Now, however, consider what happens if you start at three o’clock (i.e., 3:00) and add
fifteen hours. You don’t wind up at eighteen o’clock (i.e., 18:00) because there is no
such hour (on a traditional twelve-hour clock). Instead, what happens conceptually
is that the hour “circles around”. Indeed, on a traditional analog clock, this is what
happens physically, as well. It also provides a way of thinking about the problem
— use a number circle instead of a number line.

A number circle is a circle with labeled tick marks (indicating the integers)
rather than a line with tick marks. A traditional number circle increases in the
clockwise direction and decreases in the counterclockwise direction. An example,
which includes the first twelve non-negative integers, is illustrated in Figure 4.4.

Addition on the number circle involves moving in the clockwise direction from
a particular tick mark. So, for example, suppose you are interested in the quantity

4.4. THE PATTERN 23

0
1

2

3

4

5
6

7

8

9

10

11

Figure 4.4: Numbers on a Circle

x

x+2

x-1
x

a. Addition b. Subtraction

Figure 4.5: Addition and Subtraction on a Circle

x + 2. Then, you locate x on the number circle and move 2 tick marks in the
clockwise direction. This is illustrated in Figure 4.5a.

Similarly, subtraction on the number circle involves moving in the counterclock-
wise direction from a particular tick mark. So, for example, suppose you are inter-
ested in the quantity x − 1. Then, you locate x on the number circle and move 1
tick mark in the counterclockwise direction. This is illustrated in Figure 4.5b.

The important difference between addition/subtraction on the number line and
on the number circle should be readily apparent. On the number line the values are
unbounded and never repeat, while on the number circle the values are bounded
and (eventually) repeat.

4.4 The Pattern

The way to approach problems of this kind is to distinguish the number of times
you move around the circle (which you typically aren’t interested in) from where
you are on the circle (which you are interested in). Specifically, the pattern works

24 CHAPTER 4. ARITHMETIC ON THE CIRCLE

as follows:

• Use a 0-based set of consecutive integer values;

• Use integer arithmetic and the following variables:

int cardinality, change, current, passes, remainder;

• If needed, calculate the number of times 0 is passed as follows:

passes = (current + change) / cardinality;

• Calculate the remainder as follows:

remainder = (current + change) % cardinality;

where current denotes the current value, change denotes the change (either positive
or negative), and cardinality denotes the number of elements in the set of values.

4.5 Examples

The arithmetic on the circle pattern arises in a wide variety of situations, some
obvious and some less obvious.

Some Obvious Examples

The most obvious example in which arithmetic is performed on a circle is the cir-
cular, analog clock (which even looks like a number circle). Indeed, this is exactly
the number circle in Figure 4.4, except that noon and midnight are represented as
0 instead of 12. To avoid both this potential source of confusion and the AM/PM
issue, consider, instead, a clock that uses military time. In such a clock, midnight is
“0 hundred hours”, eleven in the morning is “11 hundred hours”, five in the evening
is “17 hundred hours”, etc. Such a clock is illustrated in Figure 4.6.

Some questions involving such a clock are easy to answer. For example, suppose
it is currently 5 hundred hours, what time will it be in 8 hours? This doesn’t
require any thought; you can use traditional addition to determine that the answer
is 13 hundred hours. However, some are more difficult. For example, suppose
it is currently 17 hundred hours, what time will it be in 12 hours? Unfortunately,
traditional addition is no longer enough to solve this problem. Obviously, the answer
isn’t 29 hundred hours, because there is no such time. Instead, you have to account
for the fact that you’ve advanced a day. Even worse, suppose it is 17 hundred hours

4.5. EXAMPLES 25

0

6

12

18

1
2

3

4

5

7

8

9

10
1113

14

15

16

17

19

20

21

22
23

Figure 4.6: An Analog Military Clock

and you want to know the time 93 hours from now. Then, you have to account for
the fact that you have advanced several days.

Using the arithmetic on the circle pattern, 17 hundred hours plus 12 hours can
be thought of (using integer arithmetic) as a passes of ((17 + 12) / 24) or 29 /
24 or 1 (i.e., one time around the circle), with a remainder of ((17 + 24) % 24)
or 29 % 24 or 5 (i.e., five additional ticks). Similarly, for 17 hundred hours plus 93
hours:

remainder = (17 + 93) % 24;

which is 110 % 24 or 14.
As another example, consider weights. In the United States, weights are mea-

sured in pounds and ounces, and the ounces are constrained to be in the half-open
interval [0, 16). So, if you have 9 ounces of gold, and someone gives you 14 ounces
of gold, you don’t normally say that you have 23 ounces of gold, instead you say
that you have 1 pound and 7 ounces of gold. In other words, the value of current
is 9, the value of change is 14, the value of cardinality is 16 and:

passes = (9 + 14) / 16;
remainder = (9 + 14) % 16;

which means passes is 23 / 16 or 1 pound, and remainder is 23 % 16 or 7 ounces.

Less Obvious Examples

As shown above, arithmetic on the circle can be used with values that are naturally
numeric, but they can also be used with categories.

On common application is to determine the day of the week some number of
days in the future. The set of days of the week (i.e., Sunday, Monday, Tuesday,

26 CHAPTER 4. ARITHMETIC ON THE CIRCLE

Wednesday, Thursday, Friday, and Saturday) has a cardinality of 7. Using a 0-
based numbering scheme, you can denote Sunday by 0, Monday by 1, etc. Then,
if it is currently Wednesday (i.e., day of the week 3), you can determine the day of
the week 6 days in the future as:

remainder = (3 + 6) % 7;

which is 9 % 7 or 2 (i.e., Tuesday). Similarly, the day of the week 516 days in the
future is:

remainder = (3 + 516) % 7;

which is 519 % 7 or 1 (i.e., Monday). Obviously, the same thing can be done for
months of the year. This set has a cardinality of 12 and a 0-based numbering scheme
would assign 0 to January, 1 to February, etc.

Less obviously, perhaps, this pattern can be used for categories that are not
normally numbered. For example, suppose you want to know whether a number is
even or odd (a set with cardinality of two). Letting 0 denote the even numbers and
1 denote the odd numbers, you can determine whether the sum of two numbers,
current and change, is even or odd using:

remainder = (current + change) % 2;

Further, since change can be zero, you can determine whether the number current
is even or odd using:

remainder = current % 2;

which makes sense since a number is even if it is divisible by two with no remainder
(sometimes called “evenly divisible by two”).

This pattern can also be used for such things as determining which player’s turn
it is in a game, how to cycle through a fixed set of colors in a drawing program, etc.
Indeed, this pattern arises so frequently that it is virtually indispensable.

CHAPTER 5
Truncation

Integers commonly include more digits of accuracy than needed. In
some situations, the right way to deal with this is using truncation. Trunca-

tion problems can be solved by dropping the right-most digits using the techniques
from Chapter 3 on digit manipulation and simple multiplication.

5.1 Motivation

Suppose you have to write a payroll program for a manufacturing company. The
employees at the company get paid a fixed amount per piece, but only for multiples of
ten pieces. For inventory purposes, the company keeps track of the exact number of
pieces completed, but for payroll purposes, that number has more digits of accuracy
than is needed. For example, if the employee completes 520 pieces, 521 pieces, or
529 pieces, she/he is going to be payed for 520 pieces. Hence, the payroll system
you are writing must truncate the actual number of pieces produced to the second
digit (i.e., the 10s place).

5.2 Review

If the person were being paid per completed batch of ten pieces (rather than per
piece), then you would only need to determine the number of completed batches.
Since there are 10 pieces per batch, you could accomplish this by dropping the
right-most digit. Further, you know from the discussion of digit manipulation in
Chapter 3 that this can be accomplished by dividing by 101 (using integer division).

For example, letting number denote the actual number produced (at full accu-
racy):

27

28 CHAPTER 5. TRUNCATION

batches = number / 10;

where / denotes integer division. So, an employee that completed 526 pieces com-
pleted 52 batches (ignoring the remaining 6 pieces).

5.3 Thinking About the Problem
Unfortunately, what you need is not the number of batches but, instead, the number
of pieces truncated to the 10s place. Fortunately, given the number of batches, you
can calculate this pretty easily. In particular:

truncated = batches * 10;

So, continuing with the example, the 52 batches corresponds to 520 units truncated
to the 10s place.

5.4 The Pattern
It turns out that there’s nothing special about the 10s place, so the general pattern
is easy to see. Letting place denote the integer place to truncate to (i.e., 10 for
the 10s place, 100 for the 100s place, etc.), then the value truncated to that place
is given by:

truncated = (number / place) * place;

where / again denotes integer division.
One important aspect of this pattern is that it illustrates the importance of not

over-generalizing. In particular, at first glance, you might think that the expression
(number / place) * place could be simplified to number. However, this is not
the case when using integer division. Specifically, when using integer division, (a
/ b) * b only equals a when a is evenly divisible by b. For example, as discussed
above, (526 / 10) * 10 is equal to 52 * 10 or 520, which does not equal 526.

5.5 Examples
Suppose you want to talk about something that will happen 87 years after the year
1996. You might want to use the exact year (i.e., 1996 + 87 or 2083), but you
might want to know the decade or century rather than the year. Truncating to the

5.6. SOME WARNINGS 29

decade (i.e., a place of 10) using the truncation pattern yields (2083 / 10) * 10
or 208 * 10 or 2080. Similarly, truncating to the century (i.e., a place of 100)
using the truncation pattern yields (2083 / 100) * 100 or 20 * 10 or 2000.

5.6 Some Warnings
It’s important to note that people use the word “truncation” in a variety of different,
but related, ways. Most importantly, people often talk about truncating floating
point values to integer values (e.g., truncating 3.14 to 3), which is commonly ac-
complished using a type cast (e.g., (int)3.14 evaluates to 3). Our concern here is
with a different notion of truncation.

It’s also important to distinguish between the accuracy used when performing
calculations and the accuracy (or format) used when displaying output. In some
situations it is necessary to perform calculations using truncated values. In other
situations it is necessary to perform calculations using all of the digits of accuracy
available and truncate at the end. In still other situations it is necessary to perform
calculations using all of the digits of accuracy available and then format the output
when it is displayed. It is your responsibility to know what is required of a particular
section of code.

Part II

Patterns Requiring Knowledge
of Logical and Relational
Operators, Conditions, and

Methods

31

33

Part II contains programming patterns that require an understanding of logical
operators, relational operators, conditions, and methods. Specifically, this part of
the book contains the following programming patterns:

Indicators. Solutions to problems in which a binary variable is used to deter-
mine whether or not another variable should be increased/decreased by an
amount/percentage.

Indicator Methods. Solutions to problems in which an indicator must be calcu-
lated before it can be used.

Rounding. Solutions to the problem of rounding (rather than truncating) an in-
teger to a particular digit (i.e., power of 10).

Starts and Completions. Solutions to problems that require the number of tasks
started and/or completed given a measure of work and an amount of work per
task.

Bit Flags. Solutions to problems in which the flow of a program needs to be con-
trolled based on the state of one or more binary values.

Digit Counting. A solution to the problem of determining the number of digits
in an integer.

Some of the patterns in this part of the book don’t make direct use of the
prerequisite concepts but alternative solutions do. This is true, for example, of
indicators. Some of the patterns in this part of the book make direct use of only
some of of the prerequisite concepts (e.g., bit flags make use of relational operators
and digit counting makes use of methods). Other patterns in this part of the books
make direct use of all of the prerequisite concepts (e.g., indicator methods, rounding,
and starts and completions). Hence, you may be able to understand some of these
patterns before you have learned about all of the prerequisite concepts.

It’s also important to note that many of the patterns in this part of the book
make use of patterns from earlier in the book. Hence, it is important to understand
the patterns from Part I before starting on Part II.

Finally, some of the patterns in this part of the book can be thought of as
specific examples of a more abstract pattern. However, that view requires a level of
sophistication that beginning programmers may not have, so they are not presented
in that way.

CHAPTER 6
Indicators

Many programs must perform calculations that vary based on conditions of
one kind or another. There are many different ways to accomplish this but

one very powerful (and common) solution is to use a multiplicative variable that
takes on the value zero when the condition isn’t satisfied and the value one when it
is.

6.1 Motivation
Variables of this kind are common in many branches of mathematics and are called
indicator variables.1 They are often denoted using a lowercase delta (i.e., δ)2, often
with a subscript to denote the condition (e.g., δs to indicate whether a person smokes
or not). Indicator variables are then multiplied by other variables in more complex
expressions.

For example, suppose you are writing a program to predict the birth weight of
babies (in grams) from the gestation period (in weeks). You might theorize that the
weight will be lower if the mother smokes during pregnancy. Ignoring whether the
mother did or didn’t smoke, after collecting data from a (random or representative)
sample of the population, you might determine a relationship like the following:

w = −2200 + 148.2g

where w (the dependent variable) denotes the birth weight (in grams), and g (an
independent variable) denotes the gestation period (in weeks).3 Accounting for the

1In statistics, they are sometimes called dummy variables.
2Don’t confuse this with an uppercase delta (i.e., ∆) that is often used to denote a change.
3Don’t be confused by the negative constant term. This model is only appropriate for longer

gestation periods, in which cases the birth weight will be positive.

35

36 CHAPTER 6. INDICATORS

mother’s smoking behavior, you might determine that the birth weight was, on
average, 238.6 grams lower when the mother smoked. You now need to decide how
to account for this in your program.

6.2 Thinking About The Problem

What you want to do is lower w when the mother smoked and leave w unchanged
when the mother didn’t smoke. Since there are only two possible states (i.e., the
mother smoked or didn’t), you might be tempted to use a boolean variable to keep
track of this information. However, it turns out that it is better to use a discrete
variable that is assigned either 0 or 1, rather than one that takes on the values true
or false. The reason is that you can use a numeric variable with the multiplication
operator, and you can’t do so with a boolean variable. In other words, a boolean
variable can’t be either the right-side or the left-side operand of the multiplication
operator.

In particular, suppose you add another independent variable, δs, and assign the
value 1 to δs if the mother smoked during pregnancy and assign the value 0 to δs

otherwise. Then, the equation for w can be expressed succinctly as follows:

w = −2200 + 148.2g − 238.6δs

In this way, w will be reduced by 238.6 when δs is 1 and will be left unchanged when
δs is 0.

Note that you could define the indicator variable differently. Specifically, you
could assign 1 to δs if the mother didn’t smoke during pregnancy and assign 0 to it
otherwise. In this case, the equation for w would be w = −2438.6+148.2g+238.6δs

(i.e., the constant would change and the sign of the last term would be reversed).
The two indicators are called converses of each other.

6.3 The Pattern

In the simplest cases, all you need to do to use this pattern is to define an int
variable, assign 0 or 1 to it as appropriate, and then use it multiplicatively in an
expression.4 In more complicated cases, you may need multiple indicators, each
with its own multiplier.

The converse indicator must take on the value 1 when the original indicator takes
on the value 0, and vice versa. This can be accomplished by subtracting the original
indicator’s value from 1 and assigning the result to the converse indicator. In other

4You can also use a double variable for the indicator if the indicator is to be multiplied by a
double variable. However, this is a situation in which most people agree that it is appropriate to
use an int and type promotion .

6.4. EXAMPLES 37

words, the converse indicator is simply 1 minus the original indicator. Which is the
“original” and which is the “converse” is completely arbitrary.

This idea can be expressed as the following pattern:

total = base + (indicator * adjustment);

with the converse indicator given by:

converse = 1 - indicator;

6.4 Examples
Returning to the birth weight example, the code for calculating the weight can be
implemented as follows:

w = -2200.0 + (148.2 * g) - (238.6 * delta_s);

where w contains the weight, g contains the gestation period, and delta_s contains
the value 1 if the mother smoked and 0 otherwise.5 Initializing g to the average
gestation period of 40.0 weeks, you could then use the statement to compare the
birth weights for the two possible values of delta_s. A delta_s of 0 would result
in a birth weight of 3728.0 while a delta_s of 1 would result in a birth weight of
3489.4.

As another example, suppose the fine associated with a first parking ticket is
smaller than the fine associated with subsequent parking tickets (specifically, $10.00
for the first ticket and $45.00 for subsequent tickets). In this case, if you assign 0
to ticketedIndicator when the person has no prior parking tickets and assign 1
to it otherwise, then you can write the statement to calculate the fine as follows.

baseFine = 10.00;
repeatOffenderPenalty = 35.00;
totalFine = baseFine + (ticketedIndicator * repeatOffenderPenalty);

As a final example, consider a rental car company that charges a base rate
$19.95 per day. There is a surcharge of $5.00 per day if multiple people drive the
car, and a surcharge of $10.00 per day if any driver is under 25 years of age. If you
assign assign 1 to multiIndicator when there are multiple drivers and you assign
1 to youngIndicator when there are any drivers under 25, then you can write the
statement to calculate the rate as follows:

5In programming languages that allow them in identifiers, it is common to use the underscore
character to indicate a subscript.

38 CHAPTER 6. INDICATORS

baseRate = 19.95;
ageSurcharge = 10.00;
multiSurcharge = 5.00;

rate = baseRate + (multiIndicator * multiSurcharge)
+ (youngIndicator * ageSurcharge);

6.5 Some Warnings

The descriptions of the examples in this chapter may have led you to use a different
solution than the one discussed above. While you may, in the end, prefer such a
solution, you should think carefully about the advantages and disadvantages before
you make any decisions.

Using if Statements

You might be attempted to use a boolean variable, if statement, and the updating
pattern from Chapter 2 rather than an indicator, and there are times when this is
appropriate. However, in general, indicators are much less verbose.

For example, returning to the birth weight problem, if you assign true to smoker
when the mother smoked during the pregnancy, then you can calculate the birth
weight as follows:

w = -2200.0 + (148.2 * g);
if (smoker) {

w -= 238.6;
}

This solution is much less concise than the solution that uses indicator variables.
It also treats the continuous independent variable (g in this case) and the discrete
independent variable (δs in this case) differently, for no apparent reason.

This approach gets even more verbose as the number of discrete independent
variables increases. For example, returning to the car rental problem, if you assign
true to areMultipleDrivers when there are multiple drivers and you assign true
to areYoung when there are any drivers under 25, then you can calculate the rental
rate as follows:

6.5. SOME WARNINGS 39

baseRate = 19.95;
ageSurcharge = 10.00;
multiSurcharge = 5.00;

rate = baseRate;
if (areMultipleDrivers) {

rate += multiSurcharge;
}
if (areYoung) {

rate += ageSurcharge;
}

When using indicator variables, each additional discrete independent variable only
leads to an additional term in the single assignment statement. When using boolean
variables, each additional discrete independent variable leads to an additional if
statement.

Using Ternary Operators

You might also be tempted to use a boolean variable, the ternary conditional op-
erator, and the updating pattern from Chapter 2 rather than an indicator, but this
is almost never appropriate. For example, returning to the parking ticket problem,
if you assign the value true to the boolean variable hasBeenTicketed when the
person has a previous ticket, then you can calculate the total fine as follows:

baseFine = 10.00;
repeatOffenderPenalty = 35.00;

totalFine = hasBeenTicketed
? baseFine + repeatOffenderPenalty
: baseFine;

Some people do prefer this solution to the one that uses an if for stylistic reasons.
That is, they think the ternary conditional operator is more concise. However, it is
not more concise than the solution that uses an indicator variable, so it is hard to
argue that it should be preferred.

Further, when the number of discrete independent variables increases this ap-
proach gets much less concise. Returning to the car rental problem you could
calculate the rental rate as follows:

40 CHAPTER 6. INDICATORS

baseRate = 19.95;
ageSurcharge = 10.00;
multiSurcharge = 5.00;

rate = areMultipleDrivers
? baseRate + multiSurcharge + (areYoung ? ageSurcharge : 0.0)
: baseRate + (areYoung ? ageSurcharge : 0.0);

However, this statement is very verbose (and, many people think, difficult to un-
derstand.

You could, instead, calculate the rental rate as follows:

baseRate = 19.95;
ageSurcharge = 10.00;
multiSurcharge = 5.00;

rate = baseRate;
rate += areMultipleDrivers ? multiSurcharge : 0;
rate += areYoung ? ageSurcharge : 0;

Again, while some people may prefer this solution to the one that uses if statements
because it is more concise, it is less concise than the solution that uses indicator
variables.

CHAPTER 7
Indicator Methods

Sometimes the value needed to perform a calculation is known, and other
times it too must be calculated. This is true of both “traditional” values and

indicators (of the kind discussed in Chapter 6). This chapter considers problems
in which an indicator’s value must be calculated before it can be used in another
expression.

7.1 Motivation

There’s a famous saying among performers, “the show must go on”, which means
that there must be a show whenever there’s an audience. In the context of Chapter 6
on indicators, this means that the number of seats sold for a particular show time
must be used to calculate an indicator, setting it to 0 when no tickets have been
sold and setting it to 1 otherwise. This is an example of a threshold indicator in
which the threshold is 1.

So, given that some number of tickets has been sold for a particular show time,
you must determine the number of shows that must be offered at that time (i.e.,
either 0 or 1). Letting shows denote the number of shows and sold denote the
number of tickets sold, you want to calculate shows from sold in such a way that
it takes on the value 0 when sold is 0 and it takes on the value 1 for all positive
values of sold.

7.2 Review

You could, of course, calculate the value of the variable shows as follows:

41

42 CHAPTER 7. INDICATOR METHODS

if (sold >= 1) {
shows = 1;

} else {
shows = 0;

}

However, you should also know that this is a bad practice, since it is likely that you
will need to use this simple algorithm in more than one place. Hence, to avoid code
duplication, you should instead write a method like the following:

public static int shows(int sold) {
if (sold >= 1) {

return 1;
} else {

return 0;
}

}

and use it as needed.

7.3 The Pattern

The entertainment example is, obviously, a very particular problem. However, it can
easily be generalized to uncover a pattern. In particular, the entertainment problem
is a particular example of a general problem in which you need to determine whether
a particular value exceeds a particular threshold. Further, there is an even more
general problem in which you need a method that returns a value of 0 or 1 based
on the value of the parameters it is passed.

For threshold indicators, the solution to the problem is the following method:

public static int indicator(int value, int threshold) {
if (value >= threshold) {

return 1;
} else {

return 0;
}

}

For other indicators, the solution is a method with parameters that vary with the
specifics of the problem.

7.4. EXAMPLES 43

7.4 Examples

It’s useful to consider examples of both threshold indicators and other indicators.

Threshold Indicators

Continuing with the entertainment example, the threshold is 1 (i.e., if the size of the
audience is 1 or more then there must be a show), so given the size of the audience
(represented by the variable size), the number of shows is given by the following:

shows = indicator(sold, 1);

Returning to the parking ticket example used in Chapter 6, letting the number
of prior tickets be given by priors, the fine can be calculated as follows:

baseFine = 10.00;
repeatOffenderPenalty = 35.00;
totalFine = baseFine + (indicator(priors, 1) * repeatOffenderPenalty);

It is also instructive to return to the car rental example from Chapter 6. For
this example, you can initialize the necessary variables as follows:

baseRate = 19.95;

ageSurcharge = 10.00;
ageThreshold = 25;

multiSurcharge = 5.00;
multiThreshold = 1;

Then, you can calculate the daily rental rate as follows:

rate = baseRate
+ (1 - indicator(minimumAge, ageThreshold)) * ageSurcharge
+ indicator(extraDrivers, multiThreshold) * multiSurcharge;

Notice that, the age surcharge uses a converse threshold indicator while the multi-
driver surcharge uses an ordinary threshold indicator.

44 CHAPTER 7. INDICATOR METHODS

Other Indicators

As an example of a more general indicator, consider the following method for cal-
culating a person’s basic metabolic rate (BMR):

b = 5.00 + 10.00m+ 6.25h− 5.00a− 161.00δf

where b denotes the BMR (in kilocalories per day), m denotes the person’s mass (in
kilograms), h denotes the person’s height (in centimeters), a denotes the person’s
age (in years), and δf is 1 if the person is female and 0 otherwise.

Now, suppose the double variables m, h, and a contain the values of the person’s
mass, height, and age (respectively), and the String variable s contains the person’s
sex. Then, you would create the following indicator method:

public static int indicator(char sex) {
if ((sex == 'F') || (sex == 'f')) {

return 1;
} else {

return 0;
}

}

and use it as follows:

b = 5.00 + 10.00 * m + 6.35 * h - 5.00 * a - 161.00 * indicator(s);

7.5 Some Warnings
As in the discussion of indicator variables in Chapter 6, you might think that you
should use boolean variables, if statements, and the updating pattern from Chap-
ter 2 instead of indicator methods. The tradeoffs here are the same as the tradeoffs
there.

It is also important to realize that you shouldn’t over-generalize the code that is
used in this pattern. Suppose, for example, you needed to assign the value true to
the boolean variable isLegal if and only if the value in the variable age is greater
than or equal to the value in the “constant” DRINKING_AGE. Given the code used to
implement the pattern, you might be tempted to do something like the following.

if (age >= DRINKING_AGE) {
isLegal = true;

} else {
isLegal = false;

}

7.6. LOOKING AHEAD 45

However, most people think this is completely inappropriate (and demonstrates a
lack of understanding of relational operators and boolean variables). Instead, it
should be implemented as follows:

isLegal = (age >= DRINKING_AGE);

That is, the expression (age >= DRINKING_AGE) evaluates to a boolean that should
be directly assigned to the variable isLegal — the if statement is superfluous. In
other words, a pattern that is appropriate for assigning values to numeric variables or
returning numeric values (like those in the previous section), may not be appropriate
for boolean variables.

7.6 Looking Ahead

On some hardware architectures, if statements (including the boolean expressions
that must be evaluated) take more CPU time to execute than arithmetic operations.
Hence, on such architectures it is important to replace if statements with arithmetic
expressions. Threshold indicators are an example of this that might arise in a course
on computer architecture.

If you’ve read Chapter 4 on arithmetic on the circle, you’re may be thinking
about how you can use the integer division operator and/or the remainder operator
to eliminate the if statements. While it is, indeed, possible to do so, the solution
is not obvious. Consider the following candidates:

• (value / (max + 1)) is 0 when value is 0, it is also 0 for every other possible
int.

• (value / max) is slightly better since it is 0 when value is 0, and 1 when
value is max, but it is still 0 for every other possible int.

• value % (max + 1) is 0 when value is 0, and is 1 when value is 1, it is value
(not 1) otherwise. (Using max rather than (max + 1) in the denominator does
not improve things.)

The easiest way to think about a solution that does work is to consider the
problem in three stages. First, consider the case when the threshold is less than
twice the value. Then, consider the special case of a non-zero threshold indicator
(i.e., when the threshold is 1). Finally, consider the general case (i.e., the threshold
can be anything).

46 CHAPTER 7. INDICATOR METHODS

A Threshold Less Than Twice the Value

When value is strictly less than (2 * threshold), it follows that (value /
threshold) is going to be either 0 or 1 (because, using real division, the result
will always be less than 2). Hence, in this case, you can find the indicator as
follows:

indicator = (value / threshold);

Unfortunately, this won’t work in general because we don’t always know value.

A Threshold of 1

One way to get to the correct solution to the special case when the threshold is 1 is
to find max consecutive integers that have the property that each divided by some
value is 1.

To move in the right direction, observe that for value in the set
{1, 2, . . . , max} it follows that (value + max) is an element of the set
{(1+max), (2+max), . . . , (value+max)}. Since value is less than or equal to max,
it also follows that each element of this set is less than or equal to (2*max). Hence,
the result of dividing each element by (max+1) (using integer division) is 1 (because
using real division the result would be strictly between 1 and 2).

To finalize the pattern when the threshold is 1, observe that (0 + max) / (max
+ 1) is 0 (using integer division), since the numerator is strictly less than the de-
nominator. What this means is that the pattern when the threshold is 1 can be
expressed as the following non-zero indicator:

indicatorNZ = (value + max) / (max + 1);

The General Case

In the general case, you need to create an indicator that is 0 when a non-negative
value is less some threshold and 1 otherwise. The easiest way to create such an
indicator is to first calculate an intermediate value that is 0 when the value is less
than the threshold and positive otherwise, and then use a non-zero indicator.

To do so, observe that, since both value and threshold are in the interval
[0, max], it follows that, as required, (value / threshold) is 0 when value is
less than threshold and that it is in [1, max] otherwise. Hence, you can calculate
intermediate as follows:

intermediate = value / threshold;

7.6. LOOKING AHEAD 47

Then, you can use intermediate and the expression for a non-zero indicator to
calculate a threshold indicator as follows:

indicatorT = (intermediate + max) / (max + 1);

Putting it all together yields the following general expression for a threshold
indicator:

indicatorT = ((value / threshold) + max) / (max + 1);

To see that this is, indeed, a generalization of the special case, you need only sub-
stitute 1 for threshold in this expression.

This leads to a general-purpose method like the following for calculating the
threshold indicator without an if statement:

public static int aindicator(int value, int threshold, int max) {
return ((value / threshold) + max) / (max + 1);

}

CHAPTER 8
Rounding

As mentioned in Chapter 5, integers commonly include more digits of accu-
racy than needed, and this sometimes leads to the need to truncate numbers.

This chapter considers a common alternative to truncation — rounding.

8.1 Motivation
In the example from Chapter 5, the worker was paid per piece, but only for multiples
of ten pieces. So, the number of pieces manufactured was truncated to the 10s
place. Not surprisingly, this policy might make workers unhappy. So, in an effort to
improve job satisfaction, the company might decide to round to the 10s place rather
than truncate to it.

8.2 Review
Under the system in Chapter 5, if an employee manufactured 526 items then they
would be paid for 520 items. As you now know, letting number denote the value of
interest and place denote the place to truncate to (e.g., 10, 100, 1000, etc.), you
can calculate the truncated value using the following pattern:

truncated = (number / place) * place;

8.3 Thinking About The Problem
Given the original value and the truncated value, it shouldn’t be too difficult to find
the rounded value. All that’s needed is a way to determine if the rounded value

49

50 CHAPTER 8. ROUNDING

is larger than the truncated value or not. If it is, then an appropriate adjustment
must be added to the truncated value.

Returning to the manufacturing example, the truncated value is 520. What
about the rounded value? Since the actual number of items is 526, and 526 is at
least halfway between 520 and 530, the rounded value should be 530. Hence, the
truncated value needs to be adjusted by 10 to get the rounded value.

Going from this specific example to a more general solution requires two obser-
vations. First, if the rounded value is larger than the truncated value, it is larger
by exactly the amount place (i.e., 10 in the example). Second, to determine if
the rounded value should be larger than the truncated value, you need to compare
the difference between the number and the truncated value (i.e., 6 in the example),
which is also the remainder after division with half of the amount place.

8.4 The Pattern

So, given the truncated value as calculated above, you can calculate the rounded
value as follows:

if ((number % place) >= (place / 2)) {
rounded = truncated + place;

} else {
rounded = truncated;

}

Note that, since place will always be a power of ten, no complications arise when
dividing it (an integer) by 2 (another integer). In other words, place is always
evenly divisible by 2.

Putting it all together, you can write a method like the following for solving
general rounding problems.

public static int round(int number, int place) {
int rounded, truncated;

truncated = (number / place) * place;

if ((number % place) >= (place / 2)) {
rounded = truncated + place;

} else {
rounded = truncated;

}

return rounded;
}

8.5. EXAMPLES 51

In essence, this pattern is a combination of the truncation pattern from Chapter 5
and a threshold indicator from Chapter 6. It is also a good example of how patterns
can be combined to solve other problems.

8.5 Examples
Returning to the manufacturing example, given an int variable named items, you
can determine how much an employee that produces 526 items should be paid by
calculating the rounded number of items as follows:

items = 526;
place = 10;
rounded = round(items, place);

As another example, suppose you want to talk about something that will happen
93 years after the year 1993. You might want to be exact and use the year 2086, but
you also might want to round to the nearest decade or century. Using the rounding
pattern, this can be accomplished as follows:

exact = (1993 + 93);
decade = round(exact, 10);
century = round(exact, 100);

In the first invocation, the value of truncated will be 2080, the value of number
% place will be 6 (which is greater than place / 2 which is 5), so the value of
rounded will be 2090. In the second invocation, the value of truncated will be
2000, the value of number % place will be 86 (which is greater than place / 2
which is 50), so the value of rounded will be 2100.

8.6 A Warning
As mentioned in Chapter 5 on the truncation pattern, it is important to distinguish
between the numerical accuracy that should be used when performing calculations
and the accuracy (or format) used when displaying output. It is your responsibility
to know what is required of a particular section of code.

8.7 Looking Ahead
As mentioned in Chapter 7 in the discussion of threshold indicators, on some kinds
of hardware, these kinds of calculations sometimes need to be performed using
arithmetic operators only (i.e., without the use of if statements). Fortunately,

52 CHAPTER 8. ROUNDING

doing so is not very difficult. To understand how, it is easiest to build up to the
general case from some specific cases.

If you need to round to the 10s place then you need to know if the remainder is
greater than or equal to the threshold of 5, in which case you should increase the
truncated value by 10. Otherwise, you shouldn’t increase it (or you should increase
it by 0). In this case, since remainder % 5 is 1 when remainder is greater than or
equal to the threshold of 5 and is 0 otherwise, you can write the increase as:

increase = (remainder % 5) * 10;

If you need to round to the 100s place, however, things are a little more com-
plicated because then the question is not whether the remainder is greater than or
equal to 5, but whether the remainder is greater than or equal to the threshold of
50. This means that, if the threshold is calculated as follows:

threshold = 5 * (100 / 10);

then, threshold is less than 2 * value, and you can use the simplest arithmetic
threshold indicator from Chapter 7. In particular:

indicator = remainder / threshold;

You can then calculate the increase as follows.

increase = indicator * 100;

Letting place denote the place being rounded to (i.e., 10 for the 10s place, 100
for the 100s place, etc.) this can be generalized as follows:

truncated = number / place;
remainder = number % place;
threshold = 5 * (place / 10);
indicator = remainder / threshold;
increase = indicator * place;
rounded = truncated + increase;

where all of the variables are integers.

CHAPTER 9
Starts and Completions

Programs frequently need to determine the number of tasks associated
with an amount of work, given a measure of the amount of work per task.

Sometimes the need is for the number of tasks that were started, and sometimes
the need is for the number of tasks completed. This chapter considers solutions to
these kinds of problems.

9.1 Motivation

The terminology used in the name of this pattern comes from baseball/softball,
where it is common to track the number of times a pitcher starts a game and the
number of times that they complete that same game. However, as a motivating
example, it is better to think about running. For example, suppose you are working
for a charity that has organized a fund raising event in which donations are tied to
the integer number of laps (started or completed, depending on the donor) rather
than the number of miles. Each participant has a wrist band that tracks the number
of miles they run. Your job is to write a program that calculates the number of
laps that a runner has started and completed given the number of miles run (the
measure of work) and the number of miles per lap (the amount of work per task).

9.2 Thinking About the Problem

The naive approach to finding the number of completions is to use division. For
example, if a participant has run 7 miles over a 3 mile track, then they have run
7/3 = 21

3 laps. The obvious shortcoming of this approach is that the result isn’t an
integer and donations are promised per “whole” lap.

53

54 CHAPTER 9. STARTS AND COMPLETIONS

Fortunately, you know how to solve this problem. In fact, the example itself
should bring to mind the notion of doing arithmetic on a circle (or, an oval, in this
case) and the use of integer division. It then follows that 0 miles corresponds to
0/3 (i.e. 0) laps, 1 mile corresponds to 1/3 (i.e., 0) laps, 7 miles corresponds to 7/3
(i.e. 2 laps), 9 miles corresponds to 9/3 (i.e., 3) laps, etc.

Given this observation, you might then think that all you need to do to find the
number of starts is to add one to the number of completions, and a few tests might
convince you that this is, indeed, the case. For example, 7 miles over a 3 mile track
corresponds to 7/3 (i.e. 2) completions and 7/3 + 1 (i.e., 3) starts. Unfortunately,
this “solution” is only correct for some cases. For example, 9 miles over a 3 mile
track corresponds to 3 completions and 3 starts (not 4 starts). In other words, in
general, you should only add 1 to the number of completions when the denominator
isn’t evenly divisible by the numerator.

9.3 The Pattern
The simple part of the pattern involves ideas from Chapter 4 on arithmetic on the
circle and can be written as:

public static int completions(int work, int workPerTask) {
return work / workPerTask;

}

where miles denotes the number of miles run and length denotes the length of the
track.

The more complicated part of the pattern, on the other hand, involves an indi-
cator method from Chapter 7, and is given by:

public static int starts(int work, int workPerTask) {
return completions(work, workPerTask)

+ remainderIndicator(work, workPerTask);
}

where remainderIndicator() is 1 when any “extra” miles have been run and is 0
otherwise. In other words, remainderIndicator() is given by:

public static int remainderIndicator(int num, int den) {
if ((num % den) == 0) {

return 0;
} else {

return 1;
}

}

9.4. EXAMPLES 55

9.4 Examples
As an example, suppose a very energetic participant in the charity event runs 26
miles (just short of a marathon). Then, that person completed 8 laps (i.e., 26 /
3), but started 9 (since 26 % 3 is non-zero).

As another example, suppose a starting pitcher works for 7 innings in a base-
ball game (that is 9 innings long). Then, that pitcher did not complete the game
(since completions(7, 9) is 0) but did start the game (since completions(7, 9)
+ remainderIndicator(7, 9) is 1). On the other hand, a starting pitcher that
works all 9 innings has 1 (i.e., 9 / 9) completion and 1 start (since 9 % 9 is 0).

9.5 Looking Ahead
As mentioned briefly in Chapter 7, you may take advanced courses that consider
situations in which it is important to avoid the use of if statements. There are two
different ways to accomplish this when solving starts and completions problems.

An Arithmetic Solution

One approach is to use a threshold indicator instead of the indicator method used
above. In this context, (miles % length) (the number of “extra” miles run) plays
the role of value, and length plays the role of max. What this means is that the
indicator is given by:

indicator = ((miles % length) + length) / (length + 1);

Putting it all together, starts is given by:

starts = (miles / length)
+ (((miles % length) + length) / (length + 1));

An Alternative Arithmetic Solution

Integer division can be defined in two different ways, an idea that is often discussed
in great detail in upper level courses. For now, you can get some understanding of
this idea by considering a different way of solving the starts problem.

To begin, ignore situations in which the numerator is 0. Then, considering an
example in which the number of miles is between 1 and 6 (inclusive), the complete
set of numerators is given by 1, 2, 3, 4, 5, 6. If you simply divide (using integer
division) each of these elements by the denominator 3 (i.e., the length of the track
in miles), you get the set 0, 0, 1, 1, 1, 2, which is clearly incorrect.

56 CHAPTER 9. STARTS AND COMPLETIONS

But, maybe the mistake is because you’ve started counting from 1 instead of
from 0. So, So, you start from 0 instead. In this case, the set of numerators is
0, 1, 2, 3, 4, 5. If you now divide (again using integer division) each of these elements
by the denominator 3, you get the set 0, 0, 0, 1, 1, 1. Now, each element of the set is
only off by 1. So, you only need to add 1 to the result of the integer division to get
the correct answer.

In other words, ignoring situations in which miles is 0 you have the following:

starts = ((miles - 1) / length) + 1;

Now you need to consider whether this solution will work when the numerator
is 0, which depends entirely on what -1 / length evaluates to. It turns out that
there are two possible answers, depending on how integer division is defined.

In one definition, the result of an integer division is moved towards 0. Using this
definition, -1 / length evaluates to 0. This is the way integer division using the
/ operator works in Java. Using this definition of integer division, the alternative
solution does not work when miles is 0 (because the result should be 0 but will
be 1).

In the other definition, the result of an integer division is moved towards negative
infinity. Using this definition, -1 / length evaluates to -1. This is the way integer
division using the Math.floorDiv() method works in Java. Using this definition of
integer division, the alternative pattern does work when miles is 0 (because the
result should and will be 0).

In other words, the following solution:

starts = Math.floorDiv((miles - 1), length) + 1;

does work.

CHAPTER 10
Bit Flags

The flow of a program is often controlled using one or more flags, which
are binary values (i.e., yes/no, on/off, true/false) that indicate the current

or desired state of the system. This chapter considers one common approach for
working with flags.

10.1 Motivation

Suppose you’re developing an adventure game in which there are a variety of different
items that players can collect and put in their inventory, and the actions that players
can take (and the results of those actions) depend on the items that they have in
their possession. Without knowing anything else about the game, it’s clear that
the program will include a variety of if statements that will control the flow, and
that these if statements will have boolean expressions that involve the variables
that represent the items. This chapter will help you solve problems that involve the
management of, and the performance of operations on, these kinds of variables.

10.2 Review

You could, of course, have a boolean variable for each item that is assigned true
when the player has the item and false otherwise. The shortcoming of this ap-
proach is that there tends to be a large number of such variables, and they all need
to be passed into the various methods that need them.1

1If you already know about arrays, you might think that a boolean[] array would resolve this
shortcoming. While that’s true, it introduces another shortcoming, the need to keep track of the
correspondence between index numbers and inventory items.

57

58 CHAPTER 10. BIT FLAGS

1101

2
3
 2

2
 2

1
 2

0

1 8 + 1 4 + 0 2 + 1 1

Figure 10.1: Binary Representations of an Integer

10.3 Thinking About The Problem
Bit flags take advantage of the fact that everything in a digital computer is stored
as 0s and 1s. For example, suppose a non-negative integer is represented by 4 bits,
each of which can contain a 0 or 1. Each of the 4 positions corresponds to a power of
2 (i.e., the 1s place, the 2s place, the 4s place, and the 8s place). This is illustrated
in Figure 10.1 for the 4-bit binary number 1101, which is 13 in base 10. (If you’re
confused, see Figure 3.1 for an example that uses base 10.)

Given this representational scheme, you can use a single non-negative 4-bit in-
teger to hold up to four different binary flags. Then, you can use the &, |, and ˆ
operators to perform bitwise “and”, “inclusive or”, and “exclusive or” operations on
these integer values.

10.4 The Pattern
For simplicity, assume that the number of flags you need to work with can be
represented using a single variable (e.g., one int or long). The pattern then involves
several steps:

1. Create masks that represent each of the binary states of interest. Each mask
is a variable of appropriate type that is initialized to a unique power of 2.

2. Declare a variable that will hold the bit flags.

3. As needed, set particular bits (i.e., make the bits 1) using the | operator,
clear particular bits (i.e., make the bits 0) using the & operator, and/or toggle
particular bits (i.e., switch the bits to their other value) using the ˆ operator.

4. As needed, check the value of particular bit using the | operator and a rela-
tional operator.

The way in which you should check the value of particular bit flags varies with
what you are trying to accomplish. However, before considering those details, it is
important to think about how you can combine simple masks into composite masks.

10.4. THE PATTERN 59

Again for simplicity, suppose that the variables you are using are represented
using eight bits and that the left-most bit is used to indicate the sign (with a 0
indicating that the number is positive). Then, there are seven different unique
(positive) masks, as follows: 00000001, 00000010, 00000100, 00001000, 00010000,
00100000, and 01000000, each of which has a single bit that is set. You can create
a composite mask (i.e., a mask with more than one bit set) using the | operator.
For example, suppose you want a composite mask with both the left-most usable
bit and the right-most bit set. You can accomplish this as follows:

00000001

| 01000000

01000001

Now, suppose you have a composite mask named needed and a state variable
named actual. There are several things you might want to know about the rela-
tionship between the two, and each question must be answered slightly differently.

Suppose you want to know if any of the bits that are set in needed are also set
in actual. You can accomplish this as follows:

public static boolean anyOf(int needed, int actual) {
return (needed & actual) > 0;

}

The expression needed & actual evaluates to a value in which a particular bit in
that value is set if and only if the corresponding bit is set in both needed and
actual. Then, if any bit in needed & actual is set, the expression (needed &
actual) > 0 will evaluate to true.

Instead, you might want to know if all of the bits that are set in needed are
also set in actual. You can accomplish this as follows:

public static boolean allOf(int needed, int actual) {
return (needed & actual) == needed;

}

Finally, you might want to know if exactly the same bits in needed and actual
are set. This can be accomplished as follows:

public static boolean onlyOf(int needed, int actual) {
return (needed == actual);

}

That is, needed and actual must be identical.

60 CHAPTER 10. BIT FLAGS

10.5 Examples
Returning to the example of the adventure game, you can represent the individual
items using the following masks:

public static final int FOOD = 1;
public static final int SPELL = 2;
public static final int POTION = 4;
public static final int WAND = 8;
public static final int WATER = 16;
// And so on...

You can then represent the player’s inventory as a single int as follows:

int inventory;
inventory = 0;

When the player acquires an individual item, you can use the bitwise “or” op-
erator to adjust the inventory. For example, suppose the player acquires WATER.
You can use the updating pattern from Chapter 2 as follows:

inventory = inventory | WATER;

At this point, the variable inventory contains the value 16. But, what’s important
is that the bit corresponding to “having water” is set.

Suppose the player later acquires SPELL. You can handle this as follows (using
the compound assignment operator in this case, to illustrate its use):

inventory |= SPELL;

At this point, the variable inventory contains the value 18. But, again, what’s
important is that the bits corresponding to “having spell” and “having water” are
set.

You can then check to see if the bit corresponding to “having water” is set as
follows:

boolean haveWater = (inventory & WATER) > 0;

Note that either the allOf() algorithm or the anyOf() algorithm would work in
this case, since the mask is not composite.

Similarly, you can then check to see if the bit corresponding to “having a potion”
is set as follows:

10.6. SOME WARNINGS 61

boolean havePotion = (inventory & POTION) > 0;

When the player later drinks the water, you can clear that bit as follows:

inventory = inventory & (WATER ^ Integer.MAX_VALUE);

Here, since Integer.MAX_VALUE is an int in which every bit is 1 (except for the
sign bit), the result of (WATER ^ Integer.MAX_VALUE) is a mask in which all of the
bits of WATER (except the sign bit) have been toggled. This is easy to see using 8-bit
int values as follows:

00010000

ˆ 01111111

01101111

So, since the bit that corresponds to water in this new mask is 0, The bitwise & of
inventory with this new mask will clear the bit that corresponds to water in the
result.

10.6 Some Warnings

Note that beginning programmers commonly use the wrong bitwise operator when
creating composite masks. This is because they tend to describe the process as
setting one bit and another bit. However, if you take the bitwise & of two simple
masks, the result will always be zero. For example, consider the 8-bit representations
of the mask for food and the mask for water. Suppose you want to create a composite
mask to determine if the player has both food and water. If you create the mask
using the bitwise & operator, you get the following:

00000001

& 00010000

00000000

If, instead, you use the bitwise | operator, you get the desired result, as follows:

62 CHAPTER 10. BIT FLAGS

00000001

| 00010000

00010001

Note that beginning programmers also make the same mistake when updating
the variable that contains the current state. Again, using 8-bit representations,
suppose the player has water. Then inventory will be 00010000). When the
player later acquires the spell, you must use the bitwise operator as follows:

00010000

| 00000010

00010010

If you used the bitwise & operator (thinking the player has water and the spell),
you would wind up with nothing in inventory. This can be shown as follows:

00010000

& 00000010

00000000

10.7 Looking Ahead

At this point, it is sufficient to think that integer values are represented in a specified
number of bits with the left-most bit indicating the sign (0 for positive values and
1 for negative values). In fact, this is not the representational scheme that is used
most commonly. One easily understood problem with such a scheme is that there
are two different representations of zero. Using eight bits, this scheme has both
positive zero (i.e., 00000000) and negative zero (i.e., 10000000). When you take
a deeper look at data types, you will learn that the most common representation
of integers is a system called two’s complement. This system works essentially like
an odometer, with a single zero (i.e., 00000000) that rolls up to the first positive
integer (i.e., 00000001) and rolls back to the first negative integer (i.e., 11111111).
This means that there is one more negative number than there are positive numbers.

10.7. LOOKING AHEAD 63

Fortunately, the left-most bit of all negative numbers is still 1 and the left-most bit
of all positive numbers is still 0.

If, in the future, you take a course on data structures and algorithms you may
also learn about the BitSet class which allows the number of flags to “grow”. In
particular, you may consider the time and space efficiency of providing this func-
tionality.

CHAPTER 11
Digit Counting

There are many situations in which a program needs to know the number
of digits in an integer. Unfortunately, numbers don’t have properties other

than their value. In other words, anthropomorphizing a little, numbers don’t know
anything about themselves. This chapter considers solutions to this problem.

11.1 Motivation

As you know from Chapter 3 on digit manipulation, in order to drop or extract
digits from the left side of an integer, you needed to know the number of digits
in the number. In the examples in that chapter, the number of digits was known.
Unfortunately, that isn’t always the case. For example, credit card account numbers
might have between six and nine digits. The problem, then, is that of determining
the number of digits in a number.

11.2 Review

As you also know from Chapter 3 on digit manipulation, the position of a digit
corresponds to a particular power of 10. Specifically, the digit in position n (counting
from the right, starting with 0) corresponds to the 10ns place. For example,
position 2 corresponds to the 102 or 100s place. To count digits you need to be able
to invert the process. For example, to count a three-digit number, you need to find
the position that the 100s place corresponds to.

As you hopefully recall, this is the domain of the logarithm. In a decimal (i.e.,
base 10) representation, the log10(x) is often described as the value of n that 10
must be raised to to get x. More formally, log10(x) is the value of n that satisfies

65

66 CHAPTER 11. DIGIT COUNTING

x = 10n. So, returning to our example, the position of the 100s place corresponds
to log10(100), which is 2 (since 102 is 100).

More generally, logb(x) is the value of n that satisfies x = bn, where b is referred
to as the base (or radix) of the logarithm.

11.3 Thinking About The Problem

Evaluating log10(x) can be quite difficult, in general. However, it is easy to find
bounds. For example, since log10(100) is 2 and log10(1000) is 3 (and logarithms are
monotonic) it follows that log10(x) is in the interval [2, 3) for any x ∈ [100, 1000).

For example, this means that the log10 of any three-digit number, say 462, is
in [2, 3). As another example, this means that log10 of any four-digit number (say
7198) is in [3, 4).

• Consider the number 7198. Math.log10(7198) evaluates to approximately
3.8572118423168926 which, as expected, is in the interval [3, 4). Hence
(int)Math.log10(7198) is 3 and digits is assigned the value 4.

• Consider the number 462. Math.log10(462) evaluates to approximately
2.6646419755561257 which, as expected, is in the interval [2, 3). Hence
(int)Math.log10(462) is 2 and digits is assigned the value 3.

• Consider the number 10000. Math.log10(10000) evaluates to 5.0 which, as
expected, is in the interval [5, 6). Hence (int)Math.log10(100000) is 5 and
digits is assigned the value 6.

11.4 The Pattern

More generally, the log10 of any n-digit number will be in the interval [n − 1, n),
which means it will be greater than or equal to n−1 and strictly less than n. Hence,
the integer part of log10 of any n-digit number will be n − 1. So, the number of
digits in the number x is given by:

public static int digits(int x) {
return (int) Math.log10(x) + 1;

}

11.5 Examples

Returning to the credit card example, suppose that the account number is as follows:

11.6. LOOKING AHEAD 67

cardNumber = 412831758;

Then, you can find the number of digits in the account number as follows:

n = digits(cardNumber);

Now, as you know from Chapter 3, if you want to extract the left-most three digits
(i.e., the issuer), you need to drop the rightmost n - 3 digits. This involves dividing
by ten to the power of n-3, which you can implement as follows:

issuer = cardNumber / (int) Math.pow(10.0, n - 3);

As another example, suppose you need to write a program for a newspaper that
converts a dollar amount (e.g., a person’s annual income, the price of a house) into a
phrase like “6 figures” or “7 figures”. You would again need to calculate the number
of digits in the number of interest. So, for example, if you initialize the variable
containing the annual income of the subject of the story as follows:

income = 156720;

you can then figure out the number of “figures” in that variable as follows:

figures = digits(income);

11.6 Looking Ahead

As with the digit manipulation pattern of Chapter 3, this pattern can be used with
other representation schemes (i.e., other bases). All that is needed is to replace 10
with the desired base, b.

Fortunately, it is easy to calculate the logarithm in one base given the logarithm
in another. That is, assuming you have the ability to calculate log10(x) (e.g., using
Math.log10() in Java):

loga(x) = log10(x)
log10(a) (11.1)

whenever x > 0.

68 CHAPTER 11. DIGIT COUNTING

11.7 A Warning
Notice that the truncation pattern from Chapter 5 is not used in this pattern.
Instead, typecasting is used to get the integer part of the value returned by
Math.log10(). This is because Math.log10() returns a double, and the trun-
cation pattern is for truncating integers.

Part III

Patterns Requiring Knowledge
of Loops, Arrays and I/O

69

71

Part III contains programming patterns that require an understanding of
loops/iteration, one-dimensional arrays, and console input/output. Specifically, this
part of the book contains the following programming patterns:

Reprompting. Solutions to the problem of prompting a user for input until they
provide a valid response.

Accumulators. Solutions to problems that require one (or a few) “running” cal-
culations.

Accumulator Arrays. Solutions to problems that require multiple, related “run-
ning” calculations.

Lookup Arrays. Solutions to problems that involve finding the values associated
with a key, when the key has special properties.

Interval Membership. A solution to problems that involve finding the interval
that contains a particular value.

Conformal Arrays. A solution to the problem of organizing multiple pieces of
information that all have a common key.

Segmented Arrays. A solution to the problem of organizing multiple pieces of
information of the same type.

Lookup arrays and the interval membership pattern both use arrays in less-than-
obvious ways to solve problems of various kinds. They are interesting in their own
right, because they help you think about novel ways to use arrays.

Conformal arrays and segmented arrays are ways to organize data using arrays
and then process the data using loops. They are used quite commonly in languages
that don’t support object-oriented programming, and, as a result, they often find
their way into programs written in object-oriented languages. They also provide an
interesting contrast to objects/classes, which can also be used to solve problems of
this kind.

CHAPTER 12
Reprompting

Programs that use the console (sometimes called command-line programs)
frequently need to prompt the user to provide input, validate the input, and

reprompt if the input is invalid. There are many different ways to accomplish these
tasks, but, as with all of the problems discussed thus far, there are better and worse
ways to do so.

12.1 Motivation

Suppose you must write a program that prompts the user to enter their age and
then retrieves their response. Since the user might make a mistake and enter a
negative value, your program must check the user’s response and reprompt them if
they’ve made a mistake.

The phrase “if they’ve made a mistake” might lead you to use an if statement
to deal with this situation. In other words, you might lead you to think the solution
is something like the following (in pseudocode):

Prompt the user to enter their age;
Read the user's response;
Assign the response to the variable named age;

if (age is negative) {
Prompt the user to enter their age;
Read the user's response;
Assign the response to the variable named age;

}

Use the variable named age;

73

74 CHAPTER 12. REPROMPTING

You would then test your program, see it works correctly, and deploy it. Unfor-
tunately, at some point, the user will probably enter an invalid response to both
prompts, and the program will fail (in one way or another).

Because beginning programmers tend to get locked into a particular solution,
you might then “correct” the code as follows:

Prompt the user to enter their age;
Read the user's response;
Assign the response to the variable named age;

if (age is negative) {
Prompt the user to enter their age;
Read the user's response;
Assign the response to the variable named age;

if (age is negative) {
Prompt the user to enter their age;
Read the response;
Assign the response to the variable named age;

}
}

Use the variable named age;

Of course, this doesn’t correct the defect at all. That is, this code will only work
for three or fewer invalid responses, and there is no limit on the number of times
that the user can enter an invalid response.

12.2 Review

What you need is a way to repeat a block of code an indefinite number of times
(i.e., until the user enters a valid response). The phrase “repeat a block of code”
should immediately bring to mind a loop of some kind. The phrase “an indefinite
number of times” should bring to mind a while or do loop. In other words, you are
already partway to a solution.

As you know, a while loop is appropriate if the body needn’t be executed, and
a do loop is appropriate if the body must be executed at least once. So, you might
be thinking that the solution to the reprompting problem involves a while since
you don’t always need to reprompt. The truth is slightly more complicated than
that.

12.3. THINKING ABOUT THE PROBLEM 75

12.3 Thinking About The Problem
It turns out that there are, in fact, two different versions of this problem. In the
first, the initial prompt and the subsequent prompts (i.e., after the user provides
an invalid response) are the same. In the second, the initial prompt is different
from the subsequent prompts. What this means is that a do loop is appropriate
in solutions of the first version, and a while loop is appropriate in solutions of the
second version.

12.4 The Pattern
The pattern that solves the first version of this problem can be described as follows:

1. Enter a do loop. In the body of the loop:

1.1. Prompt the user.
1.2. Retrieve the user’s response.

2. Repeat when the response is invalid.

The pattern that solves the second version of this problem can be described as
follows:

1. Prompt the user with the normal message.

2. Retrieve the user’s response.

3. Enter a while loop when the response is invalid. In the body of the loop:

3.1. Prompt the user with the alternate message.
3.2. Retrieve the response.

4. Repeat.

12.5 Examples
In the following examples, the user is prompted to enter an age, which must be
non-negative to be valid. In the first version, the user is always provided with the
same prompt:

do {
JMUConsole.printf("Enter a non-negative age: ");
age = JMUConsole.readInt();

} while (age < 0);

76 CHAPTER 12. REPROMPTING

In the second version, the user is only told that the age must be non-negative after
an invalid response is provided:

JMUConsole.printf("Enter your age: ");
age = JMUConsole.readInt();
while (age < 0) {

JMUConsole.printf(" Enter a non-negative value: ");
age = JMUConsole.readInt();

}

Note that, in general, there are many ways in which the user could respond
inappropriately, not just by entering a negative number. For example, the user
could enter a non-number when a number was required, enter a number that is too
large, or enter a non-integer when an integer was required. In all of these cases, the
pattern remains the same, all that changes is the boolean expression in the loop
(and, perhaps, the way the response is read).

CHAPTER 13
Accumulators

In some situations, the iterations of a loop are independent of each other. How-
ever, in many situations a program needs to “keep track of” something over the

course of multiple iterations. In situations like these, accumulators often come into
play.

13.1 Motivation

If you ask someone “on the street” how to add a column of numbers by hand,
they will probably say something like “just add them up”. If you then ask them
to demonstrate with a column of fifty single-digit numbers, they probably won’t
have any trouble. However, if you talk to them while they’re doing it (especially if
you drop some numbers into the conversation), they’ll have much more difficulty,
and may not be able to do it at all.

If you then suggest that they “write things down” as they go, there’s a good
chance that they won’t know what you mean and/or how that would help. The
reason is that, when adding single-digit numbers, people use their brain both to add
pairs of numbers and to store the result, and they can’t imagine how to use paper
for storage. However, as you know, when writing a program you must carefully
differentiate between the two.

13.2 Review

Suppose you need to write a program that operates on all of the elements of an
array of numbers (e.g., double values). You will immediately recognize that you
need to use a loop. Hopefully, because it’s a determinate (or definite) loop (i.e., the

77

78 CHAPTER 13. ACCUMULATORS

number of iterations is known), you will also recognize that you should use a for
loop.

For example, given an array named data that contains n elements, you might
start with code like the following:

for (int i = 0; i < n; i++) {
// Do something with data[i]

}

To go from here to a program that calculates the sum, you need to think about
what needs to be done with each element of the array (i.e., each data[i] in the
example) in order to calculate the sum.

13.3 Thinking About The Problem
Returning to the person on the street, suppose you again ask them to find the sum
of fifty single-digit numbers and describe what they are doing while they are doing
it. Suppose further that the numbers start with 7, 3, and 2. Most likely, they will
say something like “7 plus 3 is 10, plus 2 is 12, ...”. Which is to say, they will use
what is commonly called a running total.

If you now point this out to them, they will probably be able to use a piece of
paper to store the running total, rather than their brain. This is exactly the same
technique that you need to use when writing a program for this purpose. That is,
you need a variable, called an , to store the running total.

13.4 The Pattern
The accumulator pattern involves declaring a variable of appropriate type in which
the running value can be stored, initializing this variable to an appropriate value,
and then using the updating pattern from Chapter 2 to (potentially) change the
value each iteration.

In the context of finding the sum of an array of double values, this pattern is
realized as follows:

double total;
int n;

n = Array.getLength(data);
total = 0.0;

for (int i = 0; i < n; i++) {
total += data[i];

}

13.5. EXAMPLES 79

In this realization, total is declared to be a double because the sum of an array
of double values is a double, it is initialized to 0 because the sum of an array
containing no elements is zero, and at each iteration total is increased by the value
of data[i].

13.5 Examples

An accumulator can be of almost any type and can be used for a variety of different
purposes. Several examples should make the flexibility of this pattern apparent.

Numeric Examples

In addition to finding the sum, numeric accumulators can be used for many other
purposes. For example, you can use a numeric accumulator to find either the min-
imum or the maximum of an array of double values. This is illustrated for the
maximum below:

double maximum;
int n;

n = Array.getLength(data);
maximum = Double.NEGATIVE_INFINITY;

for (int i = 0; i < n; i++) {
if (data[i] > maximum) maximum = data[i];

}

The accumulator (now named maximum) is initialized to the lower bound on
double values (which is defined in a static attribute of the Double class named
Double.NEGATIVE_INFINITY), and it is only updated at iteration i if data[i] is
greater than the running maximum that has been found so far.

Boolean Examples

Boolean accumulators are commonly used for containment checks (i.e., to deter-
mine if an array contains a particular target value). In the following example, the
contains() method determines if the double value named target equals any ele-
ment of the double array named data:

80 CHAPTER 13. ACCUMULATORS

boolean found;
int n;

n = Array.getLength(data);
found = false;

for (int i = 0; ((i < n) && !found); i++) {
if (target == data[i]) found = true;

}

The accumulator in this case is the boolean variable named found. It is important
to note that this method does not assign false to found when target does not
equal data[i], as this is the default value of found. Note also that, though it isn’t
necessary to do so, this method breaks out of the loop as soon as found is true. It
other words, it only iterates as long as both i < n evaluates to true and !found
evaluates to true.1

Examples with Multiple Accumulators

Sometimes it is convenient or even necessary to use two accumulators in the same
loop. In the following example, one accumulator named total contains the running
total, and another accumulator named lowest contains the running minimum:

double lowest, result, total;
int n;

n = Array.getLength(data);
total = 0.0;
lowest = Double.POSITIVE_INFINITY;

for (int i = 0; i < n; i++) {
total += data[i];
if (data[i] < lowest) lowest = data[i];

}
result = (total - lowest) / (n - 1);

Then, it returns the mean of the elements of the array after having dropped the
minimum. While one could accomplish the same thing using two loops (one to
calculate the running total and one to calculate the minimum), it is much more
elegant to use one loop and two accumulators.2

1If you know about the break statement, you could also use it in the body of the if statement
to break out of the loop.

2This implementation assumes that the array has at least 2 elements. A more robust imple-
mentation would ensure that this is the case.

13.6. A WARNING 81

As another example, suppose you want to find not the maximum of an array,
but, instead, the index of the largest element (often called the argmax, the argument
that maximizes the “function”, as opposed to the max). One way to do this is to
use one accumulator to keep track of the maximum and another to keep track of its
index as follows:

double maximum;
int index, n;

n = Array.getLength(data);
maximum = Double.NEGATIVE_INFINITY;
index = -1;

for (int i = 0; i < n; i++) {
if (data[i] > maximum) {

index = i;
maximum = data[i];

}
}

13.6 A Warning

Some people like to initialize the accumulator to a “smarter” value. For example,
when calculating the running total, some people like to initialize the accumulator
to the 0th element of the array rather than 0 as follows:

double total;
int n;

n = Array.getLength(data);

// Initialize to element 0
total = data[0];

// Start with element 1
for (int i = 1; i < n; i++) {

total += data[i];
}

The purported advantage of this approach is that there is one less iteration of the
loop.

As another example, when calculating the maximum, some people like
to initialize the accumulator to the 0th element of the array rather than
Double.NEGATIVE_INFINITY as follows:

82 CHAPTER 13. ACCUMULATORS

double maximum;
int n;

n = Array.getLength(data);

// Initialize to element 0
maximum = data[0];

// Start with element 1
for (int i = 1; i < n; i++) {

if (data[i] > maximum) maximum = data[i];
}

Again, this has the advantage of one fewer iterations. It also has the advantage of
not having to treat Double.NEGATIVE_INFINITY as a special case.

The shortcoming of this approach is that arrays of length 0 must be treated
as a special case. That is, if the array contains no elements then initializing the
accumulator to element 0 of the array will throw an exception (at run-time) if the
array has no elements. Hence, one must first check to ensure that the array has a
length of at least 1.

In some circumstances, this may be worthwhile. For example, the argmax()
method can be written using just the accumulator named index by changing the
initialization and the expression in the if statement as follows:

double maximum;
int index, n;

n = Array.getLength(data);

// Initialize to element 0
index = 0;

// Start with element 1
for (int i = 1; i < n; i++) {

if (data[i] > data[index]) index = i;
}

Whether this trade-off is worthwhile is a matter of personal preference.

13.7 Looking Ahead

Though you may not have used String objects other than for output yet, you will
soon, and they can and are used as accumulators in a variety of different ways. They

13.7. LOOKING AHEAD 83

are commonly used with the concatenation operator, to combine String objects into
a longer String.

For example, the following method is passed an array of String objects contain-
ing the parts of a person’s name (e.g., personal name, “middle” name, and family
name) and constructs a Gmail address from them:

int n;
String address;

n = Array.getLength(name);
if (n == 0) {

address = "no-reply";
} else {

address = name[0];
for (int i = 1; i < n; i++) {

address += "." + name[i];
}

}
address += "@gmail.com";

The accumulator in this case (named address) creates a long String that contains
all the parts of the person’s name, with periods between them.

CHAPTER 14
Accumulator Arrays

Programs often need to keep track of (in one way or another) multiple things
over multiple iterations. In some cases, this can be accomplished with multiple

accumulators of the kind discussed in Chapter 13. However, in other cases, it is
better to use an array of accumulators.

14.1 Motivation
Many K-12 schools assign numeric grades (on a scale of 0 to 100) to individual
students during the year and then, at the end of the year, create a summary report
that shows the number of students that were in each centile (i.e., the 90s, the 80s,
etc.). If you were asked to write a program for this purpose, you’d know (from
Chapter 13) that you should use an accumulator to keep a running count of the
number of students in each centile. Since there are eleven different centiles (treating
100 as an entire centile), this means that you need eleven different accumulators.

14.2 Review
If you approached the problem in this way, you might proceed by declaring and
initializing eleven different accumulators as follows:

int ones, tens, twentys, thirtys, fortys, fiftys, sixtys,
seventys, eightys, ninetys, hundreds;

ones = tens = twentys = thirtys = fortys = fiftys
= sixtys = seventys = eightys = ninetys = hundreds = 0;

You then might write the following loop to update these accumulators:

85

86 CHAPTER 14. ACCUMULATOR ARRAYS

int n = Array.getLength(data);

for (int i = 0; i < n; i++) {
if (data[i] < 10) ones++;
else if (data[i] < 20) tens++;
else if (data[i] < 30) twentys++;
else if (data[i] < 40) thirtys++;
else if (data[i] < 50) fortys++;
else if (data[i] < 60) fiftys++;
else if (data[i] < 70) sixtys++;
else if (data[i] < 80) seventys++;
else if (data[i] < 90) eightys++;
else if (data[i] < 100) ninetys++;
else hundreds++;

}

Unfortunately, there are three big shortcomings of this approach. First, all
of the variables must be declared and initialized individually, and, while its only
mildly awkward in this case, if you needed more accumulators it would become very
awkward. Second, the nested if statement that is used to update the appropriate
accumulator is both awkward, tedious, and error-prone. Finally, since methods in
Java can only return a single entity, you could not write a re-usable method to
return all of the calculated values, you would have to copy it to wherever it was
needed.

As you should know, in situations like this (i.e., when you have multiple “related”
values) it is better to use an array than to use individual variables. What you may
not yet know is how to use an array to solve the centile histogram problem.

14.3 Thinking About The Problem

The first thing to realize is that the variables ones, tens, etc. can be replaced
with an array named count. Specifically, count[0] will replace ones, count[1]
will replace tens, etc.1 This facilitates both the declaration and the initialization.

The second thing to realize is that the truncation pattern from Chapter 5 can
be used to calculate the index associated with a particular centile. Specifically, one
can truncate to the 10s place to get the centile. For example, a value of 63 is in
centile 63/10 (i.e., centile 6; the 60s), a value of 8 is in centile 8/10 (i.e., centile
0; the 1s), and a value of 100 is in centile 100/10 (i.e., centile 10; the 100s). This
eliminates the need for a complicated if statement.

1Note that centiles involve the powers of 10. So, you should not be surprised to see a similarity
between the way the centiles are counted and the way the digits in a decimal (i.e., base 10) number
were counted in Chapters 3 and 11.

14.4. THE PATTERN 87

14.4 The Pattern

The pattern, then, can be stated as follows:

1. Declare and initialize an array to hold the number of accumulators needed.

2. Create an algorithm for identifying the index of the particular accumulator
that needs to be updated during a particular iteration.

3. Write a loop that calculates the index and updates the appropriate accumu-
lator.

In most situations, this logic should be encapsulated in a method.

14.5 Examples

A few examples should help you see how you can use this pattern in a wide variety
of situations.

The Motivating Example

Continuing with the grading example, this pattern can be implemented as follows:

public static int[] gradeHistogram(int[] data) {
int centile, n;
int[] count = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

n = Array.getLength(data);

for (int i = 0; i < n; i++) {
centile = data[i] / 10;
count[centile] += 1;

}

return count;
}

The expression data[i] / 10 is used to calculate the index (i.e., the centile) of
data[i] in the accumulator array, and the expression ++count[centile] increases
the value of the centileth accumulator by 1.

88 CHAPTER 14. ACCUMULATOR ARRAYS

Some Other Examples

This pattern works best when the algorithm for calculating the index of the accu-
mulator is straightforward. For example, suppose you need to count the number of
odd and even values in an array. If the number of even values is stored in element
0 and the number of odd elements is stored in element 1, then you can implement
this pattern as follows:

public static int[] oddsAndEvens(int[] data) {
int[] count = {0, 0};
int n = Array.getLength(data);

for (int i = 0; i < n; i++) {
count[data[i] % 2] += 1;

}

return count;
}

This works because, as you know from Chapter 4, data[i] is even when (data[i]
% 2) is 0 and is odd when (data[i] % 2) is 1.

However, in some cases you can’t (or it is awkward to) avoid the use of a compli-
cated if statement. For example, suppose you need to count the number of negative,
zero, and positive elements in an array. You can implements this as follows:

public static int[] signs(int[] data) {
int[] count = {0, 0, 0};
int n = Array.getLength(data);

for (int i = 0; i < n; i++) {
if (data[i] < 0) count[0]++;
else if (data[i] == 0) count[1]++;
else count[2]++;

}

return count;
}

Notice that, even though this implementation uses a nested if statement, there
are benefits to using an accumulator array. First, it facilitates the declaration and
initialization of the accumulators. Second, all of the accumulators can be returned
by returning the array.

CHAPTER 15
Lookup Arrays

Even beginning programmers quickly realize that arrays make it very easy
to perform the same operation(s) on each element of a homogeneous group of

elements. However, what they often don’t realize is that arrays can be used in less
obvious ways as well. Lookup arrays are one example.

15.1 Motivation

Highway exits used to be numbered using consecutive integers. The first (on a
particular highway) was exit 1, the second was exit 2, etc. Later, highway exit
numbers were changed to correspond (at least closely) to the mile marker (i.e., the
number of miles since the start of the highway). So, the exit at mile marker 1 is
numbered 1, the exit at mile marker 15 is numbered 15, etc. The problem then
arises of how to “convert” an old exit number to a new exit number.

15.2 Review

As you know, arrays have two important characteristics. First, each element must
be of the same type (i.e., the elements must be homogeneous). Second, the in-
dexes are consecutive, non-negative int values. However, beyond that, there are no
restrictions on how they can be used.

When you are first introduced to arrays, the examples all tend to involve “data
processing” of some kind. For example, they involve weekly sales, annual popu-
lations, grades on exams, etc., and the indexes are just used to differentiate the
elements. However, the values of the indexes can be meaningful in their own right.
For example, in the current context, the indexes could represent exit numbers.

89

90 CHAPTER 15. LOOKUP ARRAYS

Indexes 0 1 2 3 4 5

Elements -1 151 2816 35

Old Exit Numbers

New Exit Numbers

Figure 15.1: The Correspondence between Old and New Exit Numbers

Thinking About The Problem

All that remains to think about is whether the indexes should represent the old
exit numbers or the new exit numbers. Fortunately, given the nature of the old and
new exit numbers, the correct representational scheme is obvious. Except for the
fact that array indexes start at 0, they seem to have the same properties as the old
highway numbering system. So, if there are five exits, you can use an array of length
six (with indexes of 0, 1, ..., 5) to hold information about each exit. In this case,
the information that you want to associate with each old exit number is the new
exit number, which is, itself, an int. So, you can keep the information you need in
an int[] of length six.

For example, if the new exit numbers are at mile markers 1, 15, 16, 28, and 35,
you can store them in the following static array named NEW_NUMBERS:

private static final int[] NEW_NUMBERS = {-1, 1, 15, 16, 28, 35};

where the first element is -1 to indicate that there is no old exit number 0. This is
illustrated in Figure 15.1.

Then, the new exit number corresponding to old exit number i is just
NEW_NUMBERS[i]. For example, NEW_NUMBERS[3] is the new exit number that cor-
responds to old exit number 3.

15.3 The Pattern
The pattern follows immediately from this example:

1. Create an array in which the indexes correspond to the key that will be used
to perform the look-up, and the elements correspond to the value that is to
be determined.

15.4. EXAMPLES 91

2. Create a method that validates the key and returns the appropriate element
of the array for any valid key (and an error status for any invalid key).

15.4 Examples

Some other examples will help illustrate both the power and limitations of this
pattern.

The Motivating Example

Continuing with the exit number example, you can implement this pattern as fol-
lows:

private static final int[] NEW_NUMBERS = {-1, 1, 15, 16, 28, 35};

public static int newExitNumberFor(int oldExitNumber) {
if ((oldExitNumber < 1) || (oldExitNumber > 5)) {

return -1;
} else {

return NEW_NUMBERS[oldExitNumber];
}

}

This method returns -1 if the old exit number isn’t valid, and returns
NEW_NUMBERS[oldExitNumber] otherwise.

Non-Integer Values

Of course, though the indexes must be integers (because of the nature of arrays)1,
the values needn’t be. This is easy to illustrate in an example that looks up the
name of the exit that corresponds to an old exit number:

private static final String[] NAMES = {"", "Willow Ave.",
"Broad St.", "Downtown", "North End", "Lake Dr."};

public static String exitNameFor(int oldExitNumber) {
if ((oldExitNumber < 1) || (oldExitNumber > 5)) {

return "";
} else {

return NAMES[oldExitNumber];
}

}

1Chapter 17 on conformal arrays discusses one way to circumvent this limitation.

92 CHAPTER 15. LOOKUP ARRAYS

“Large” Contiguous Keys

The previous examples have keys that are contiguous and start at 0 or 1, like the
indexes of an array. As a result, they are particularly well-suited to this pattern.
However, it should be immediately obvious that the keys don’t have to start at 0
or 1. For example, you could use the year as a key to lookup annual data of some
kind. You then need only subtract the given key from the “base” year in order to
get the index.

For example, suppose you need to look up the annual sales revenues (in hundreds
of thousands of dollars) for a company that was established in 2015. You need only
subtract 2015 from the key in order to get the index, as follows:

private static final double[] SALES = {
107.2, 225.1, 189.9, 263.2};

public static double sales(int year) {
if ((year < 2015) || (year >= 2019)) {

return 0.0; // No sales
} else {

int index;
index = year - 2015;
return SALES[index];

}
}

Non-Contiguous Keys

Though the keys in the previous examples are contiguous, the pattern can often
be used with non-contiguous but regular keys by employing the digit manipulation
pattern from Chapter 3, the arithmetic on the circle pattern from Chapter 4, or the
truncation pattern from Chapter 5. For example, suppose you want to be able to
look-up the letter grade (either A, B, C, D, or F) for a particular numeric grade (an
int in the interval [0, 100]). You could implement this as follows:

private static final char[] GRADES = {
'F', 'F', 'F', 'F', 'F', 'F', 'D', 'C', 'B', 'A', 'A'};

public static char letterGrade(int numberGrade) {
int index;

index = numberGrade / 10;
return GRADES[index];

}

15.4. EXAMPLES 93

In this example, a grade in the 90s or 100 corresponds to an A, a grade in the 80s
corresponds to a B, etc. Then, to calculate the index from the key you need only
divide by 10.

If, instead, one wanted to convert from a numeric grade to either “Pass” or
“Fail”, one could do the following:

private static final char[] STATUS = {'F', 'P'};

public static char passFail(double grade) {
int index;

index = (int) (grade / 60.0);
return STATUS[index];

}

Finally, suppose you wanted to look-up the U.S. population for a particular
census year. You could do the following:

private static final double[] POP = {
3.9, 5.2, 7.2, 9.6, 12.9, 17.1, 23.1, 31.4, 38.6, 49.4, 63.0, 76.2,
92.2, 106.0, 123.2, 132.2, 151.3, 179.3, 203.2, 226.5, 248.7, 281.4,
308.7};

public static double population(int year) {
int index;

if ((year < 1790) || (year >= 2020)) {
return -1.0;

} else {
index = (year - 1790) / 10;
return POP[index];

}
}

To get the index from the key in this case, you first subtract the base year (i.e.,
1790, the year of the first census) from the key and then divide the result by 10
(because the census has been conducted every 10 years since the base year) to get
the index.

Keys with Multiple Parts

It should be clear that, if you want to use months as the key, then you should use a
0-based index (i.e., in which 0 denotes January, 1 denotes February, etc.). It should
also be clear that, if you want to use (contiguous) years as keys, then you should
subtract the base year from the year of interest. Suppose, however, that you have

94 CHAPTER 15. LOOKUP ARRAYS

monthly values that span multiple years. In this case, the key has multiple parts
(i.e., the month and year of interest).

Fortunately, it is easy to combine several ideas to find the index of interest. In
particular, you can use an expression like the following:

index = (year - BASE_YEAR) + month;

where the purpose of the different variables/constants should be obvious.

15.5 Looking Ahead
The process of turning a key of any kind into an integer (in a particular range) is
known as hashing. It is one of the most important topics covered in courses on data
structures and algorithms. This chapter has used some very simple and intuitive
hash functions, but hash functions can be quite sophisticated, and understanding
their properties can require serious thought.

CHAPTER 16
Interval Membership

There are many situations in which categories are defined by intervals and,
as a result, it is necessary to find the interval that contains a particular value.

This chapter considers one specific way to organize the data and perform such a
search.

16.1 Motivation

The U.S. tax code defines a group of intervals called tax brackets, each of which has
an associated marginal tax rate. In 2017, these tax brackets (for single taxpayers)
were defined as in Table 16.1. For example, a person earning $23,000 would be in
the 15% marginal bracket (i.e., would pay 10.0% on the first $9,325, and 15.0% on
everything over $9,325).

Our objective in this chapter is to organize the information in Table 16.1 in such
a way that it is easy to find the marginal tax rate for any income.

16.2 Review

Though Chapter 15 on lookup arrays used different terminology, some of the ex-
amples were closely related to the problem considered here. For example, consider
the problem of finding the letter grade that corresponds to a particular numerical
grade. Essentially, one needs to find the interval that contains the numerical grade.
However, since all of the intervals are the same size, there is no reason to explicitly
list the intervals. Hence, the code in Chapter 15 converts an interval like [90, 99]
to the index 9. In this chapter, the situations involve intervals which are irregular ,
and a different solution is required.

95

96 CHAPTER 16. INTERVAL MEMBERSHIP

From To Rate
0 9,325 10.0

9,326 37,950 15.0
37,951 91,900 25.0
91,901 191,650 28.0

191,651 416,700 33.0
416,701 418,400 35.0
418,401 Above 39.6

Table 16.1: U.S. Tax Brackets for Single Taxpayers in 2017

16.3 Thinking About The Problem

The tax table has two convenient properties (that are common to a wide variety of
similar situations). First, the union of all of the intervals is the relevant subset of
the real numbers (in this case, the non-negative reals). In other words, the tax table
contains the marginal tax rate for every possible income. Second, the intervals are
disjoint. That is, the intersection of any two intervals is the empty set.

Hence, each income has a unique marginal tax rate that can be determined using
only a sequence of boundary values, b0, b1, . . . , bn−1. Specifically, assuming you want
to “cover” the entire set of real numbers, interval 0 can be defined as [−∞, b0),
interval 1 can be defined as [b0, b1), interval 2 can be defined as [b1, b2), interval
n− 1 can be defined as [bn−2, bn−1), and interval n can be defined as [bn−1,∞).

For the tax example, the boundaries for single taxpayers are 0, 9326,
37951, 91901, 191651, 416701, 418401, making the intervals [−∞, 0), [0, 9326),
[9326, 37951), [37951, 91901), [91901, 191651), [191651, 416701), [416701, 418401),
[418401,∞).

Since the boundaries are homogeneous (i.e., they are values of the same type)
they can be stored in a single array. For example, the boundaries for single taxpayers
can be stored in a double[] named single as follows:

int[] single = {0, 9326, 37951, 91901, 191651, 416701, 418401};

Given this representation of the intervals, you could search through them as follows:

16.4. THE PATTERN 97

public static int indexOf(int value, int[] boundary) {
int i, n;

n = Array.getLength(boundary);

for (i = 0; i < n - 1; ++i) {
if ((value >= boundary[i]) && (value < boundary[i + 1])) {

return i + 1;
}

}

return n;
}

16.4 The Pattern

While the implementation above is fine, it has a couple of shortcomings.
First, it uses a for loop, which might lead someone reading the code to think

that the loop is determinate (or definite) when, in fact, it isn’t. That is, someone
reading the code might assume that there are always exactly n-1 iterations when
there can be fewer.

Second, the containment condition checks to see if the target value is greater than
or equal to the left boundary and less then the right boundary at every iteration.
However, both checks aren’t really necessary since the right boundary of interval
n− 1 is the same as the left boundary of interval n.

The first shortcoming can be corrected by using a while loop. The second
shortcoming can be corrected by continuing to loop as long as the target value is
greater than or equal to the right boundary (meaning that the correct interval has
not yet been found). Combining the two ideas leads to the following pattern:

public static int indexOf(int value, int[] boundary) {
int i, n;

n = Array.getLength(boundary);

i = 0;
while ((i < n) && (value >= boundary[i])) ++i;

return i;
}

This algorithm increases the index as long as there are more intervals to check and
the target value is greater than or equal to the right boundary.

98 CHAPTER 16. INTERVAL MEMBERSHIP

16.5 Examples
Continuing with the tax example, you can now find the tax bracket for a particular
income level as follows:

int[] single = {0, 9326, 37951, 91901, 191651, 416701, 418401};

int bracket;
bracket = indexOf(125350, single);

You can then use a lookup-array (see Chapter 15) to find the marginal tax rate that
corresponds to that tax bracket as follows:

double[] rate = {-1.0, 10.0, 15.0, 25.0, 28.0, 33.0, 35.0, 39.6};

double marginal;
marginal = rate[bracket];

16.6 Some Warnings
The obvious thing to be careful about when using this pattern is which side of the
interval is open and which side is closed. Making mistakes here can cause off-by-one
defects that are difficult to find.

The other thing to be careful about is much less obvious. One might be tempted
to combine the interval membership functionality and the look-up array functional-
ity in a single method. For example, in the tax rate example, one might be tempted
to do the following:

public static double taxRate(int income) {
int[] single = {0, 9326, 37951, 91901, 191651, 416701, 418401};
double[] rate = {-1.0, 10.0, 15.0, 25.0, 28.0, 33.0, 35.0, 39.6};

return rate[indexOf(income, single)];
}

The drawback of this seemingly elegant idea is that one often wants to perform more
than one lookup with the same index..

Perhaps the easiest way to see this is with the grade example from Chapter 15
on lookup arrays. One commonly wants to convert a numeric grade on a 0–100 scale
to both a letter grade on an F–A scale and a numeric grade on a 0–4 scale. Hence,
one wants to do one interval membership search and two array look-ups. This can
be accomplished as follows:

16.7. LOOKING AHEAD 99

int[] intervals = {
0, 60, 63, 67, 70, 73, 77, 80, 83, 87, 90, 93};

double[] gp = {
-1.0, 0.0, 0.7, 1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, 3.3, 3.7, 4.0};

String[] letter = {
"NA","F","D-","D","D+","C-","C","C+","B-","B","B+","A-","A"};

int i;
String out;

i = indexOf(88, intervals);
out = String.format("Grade: %s (%3.1f)", letter[i], gp[i]);

There’s no reason to do the interval membership search separately for each of the
two look-ups. Hence, it is better to have a separate indexOf() method.

16.7 Looking Ahead
In some situations, the intervals don’t cover all the real numbers (i.e., there are gaps).
In such situations, the value might not be in any interval. One way to handle this
(and other situations) is to use conformal arrays as discussed in Chapter 17 — use
one array to hold the left boundaries and another to hold the right boundaries.

CHAPTER 17
Conformal Arrays

In many situations there are multiple pieces of data that need to be organized in
a way that makes them easy to work with. While this problem can sometimes be

solved with a single array, many other times a more powerful organizational scheme
is needed. This is where conformal arrays come in.

17.1 Motivation

The Federal Reserve Bank tracks monthly data about many aspects of the economy.
Suppose you are working with a group that has developed a categorical measure
of consumer confidence. The group wants to explore the relationships between
its measure of consumer confidence, the consumer price index (CPI), the civilian
unemployment rate (in percent), and the M2 money stock (in billions of dollars) for
the year 2018 (on a monthly basis). You need to organize this information in such
a way that it can be used to conduct a variety of different analyses.

17.2 Review

As you know, arrays make it very easy to perform the same operation(s) on homo-
geneous values. So, if you were only interested in the CPI, for example, you could
store it in a double[] with twelve elements (since there are twelve months in the
year 2018). Such an array is referred to as a time series because the index is a
measure of time.

However, you need to organize more than just the CPI. You need to organize
all 48 data points (12 months of data for 4 different time series) and 12 associated
labels (the three-letter abbreviations for the months). Since the elements aren’t

101

102 CHAPTER 17. CONFORMAL ARRAYS

Month CPI Unemployment M2 Confidence
Jan 247.867 4.5 13855.1 Low
Feb 248.991 4.4 13841.2 Low
Mar 249.554 4.1 14022.9 Moderate
Apr 250.546 3.7 14064.4 High
May 251.588 3.6 13984.6 High
Jun 251.989 4.2 14079.2 Moderate
Jul 252.006 4.1 14113.8 Low
Aug 252.146 3.9 14170.3 Moderate
Sep 252.439 3.6 14204.7 Moderate
Oct 252.885 3.5 14211.6 High
Nov 252.038 3.5 14272.8 High
Dec 251.233 3.7 14473.0 High

Table 17.1: U.S. Macroeconomic Data for 2018 (Not Seasonally Adjusted)

homogeneous (i.e., some are numbers and some are three-letter abbreviations), you
can’t use a single array.

17.3 Thinking About The Problem

Conceptually, the data in this example can be thought of as a table. In fact, time
series data (like the data in this example) are often presented in tabular form, as
illustrated in Table 17.1. In this case, the table has one column for each type of
data and one row for each month.

While there are a variety of different ways of organizing tabular data, none of
them are available to you at the moment. Fortunately, you can use multiple different
arrays. Doing so just requires a little thought.

A table can be conceptualized in two ways. On the one hand, you can think
about a table as consisting of rows, each of which consists of columns. The is called
row-major form (i.e., rows first). On the other hand, you can think think about a
table as consisting of columns, each of which consists of rows. This is called column-
major form. In the first case, one array can be used to store each row; in the second
case, one array can be used to store each column

Regardless of which approach you use, the arrays will be conformal. That is,
they will share a common index. If you use one array for each column then the
common index will be the conceptual row headers. In the example above, if you use
this approach, the indexes will correspond to the months. On the other hand, if you
use one array for each row then the common index will be the column headers. In

17.4. THE PATTERN 103

String[] fieldA = {"Alice", "Bob", "Carol", "Dinesh"};

int[] fieldB = { 105, 98, 317, 148};

Record 2

Figure 17.1: An Illustration of Conformal Arrays

the example above, if you use this approach, the indexes will correspond to “Month”,
“CPI”, “Unemployment”, “M2”, and “Confidence”.

17.4 The Pattern
To obtain a solution to the problem you need only decide whether to use an array
for each column or an array for each row. Fortunately, in most situations, this is an
easy decision to make. Specifically, you should choose the alternative that satisfies
the following criteria:

1. The elements of the array must be of the same type; and

2. The indexes must be easily representable as int values.

In many situations, only one alternative will satisfy both criteria.
Each such conformal array can then be thought of as an individual field in

a record that has an index number. So, if you have two arrays named fieldA
and fieldB, then record number i consists of fieldA[i] and fieldB[i]. This is
illustrated in Figure 17.1 for some data about four different people. The names of
the people are stored in the String[] named fieldA, and the number of science
fiction books they own are stored in the int[] named fieldB.

17.5 Examples
Continuing with the economic example above, its useful to consider both possible
approaches for the tabular representation in Table 17.1.

If you were to use one array for each row then the first and last elements would
need to be String objects and the middle three elements would need to be double
values. Hence, this approach doesn’t satisfy the first criterion and can be eliminated.

If you were to use one array for each column, then all of the elements of the first
and last columns would be String objects and all of the elements of the three middle
columns would be double values. Hence, the first criterion is satisfied. In addition,

104 CHAPTER 17. CONFORMAL ARRAYS

the second criterion is satisfied because you can use a 0-based int representation of
the months (i.e., 0 for January, 1 for February, etc.).

This leads to the following conformal arrays:

// Month of the year
String[] month = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };

// Consumer price index for all urban consumers
// (not seasonally adjusted)
double[] cpiaucns = {

247.867, 248.991, 249.554, 250.546, 251.588, 251.989,
252.006, 252.146, 252.439, 252.885, 252.038, 251.233 };

// Unemployment rate (not seasonally adjusted)
double[] unratensa = {

4.5, 4.4, 4.1, 3.7, 3.6, 4.2,
4.1, 3.9, 3.6, 3.5, 3.5, 3.7 };

// M2 money stock (not seasonally adjusted)
double[] m2ns = {

13855.1, 13841.2, 14022.9, 14064.4, 13984.6, 14079.2,
14113.8, 14170.3, 14204.7, 14211.6, 14272.8, 14473.0 };

// Consumer confidence
String[] confidence = {

"Low", "Low", "Moderate", "High", "High", "Moderate",
"Low", "Moderate", "Moderate", "High", "High", "High" };

Then, if you want to work with the CPI and M2 for May (month 4 in a 0-based
numbering scheme), you simply need to use cpiaucns[4] and m2ns[4]. The cor-
responding abbreviation would then be month[4] and the corresponding consumer
confidence would be confidence[4].

17.6 A Warning
You might be tempted to use conformal arrays for solving the interval membership
problem discussed in Chapter 16. That is, you might be tempted to create two
arrays, left and right, that contain the left and right bounds for each interval.
The shortcoming of this approach is that it is error-prone. In particular, observe
that there is a very important constraint that involves right[i] and left[i+1]
for element i (e.g., the two must be equal or differ by one, depending on exactly
how they are used), and it is easy to inadvertently violate this constraint. Hence,
unless there are gaps in the intervals, it is better to use a single array as described
in Chapter 16.

17.7. LOOKING AHEAD 105

17.7 Looking Ahead

It is often necessary to look-up information using a non-numeric key. How to do
this efficiently is a topic for a course on data structures and algorithms. However,
ignoring efficiency, conformal arrays are part of the answer.

To see how, consider the example above. Though it isn’t necessary to do so,
because you know how the months correspond to indexes in the other arrays, you
could use the month array to find the index that corresponds to a particular month.
In particular, consider the following method:

public static int find(String needle, String[] haystack) {
int i, n;

n = Array.getLength(haystack);
i = 0;
while (i < haystack.length) {

if (needle.equals(haystack[i])) {
return i;

}
++i;

}
return -1;

}

It returns the index of the element in haystack that equals the needle. You could
then use this method to get the CPI and M2 for May as follows:

int i;
i = find("May", month);

// Do something with cpiaucns[i] and m2ns[i]

As another (more relevant) example, suppose you have conformal arrays that
are holding course identifiers and the corresponding grades in those courses as in
Figure 17.2. You could get the grade for a particular course using the following
method:

106 CHAPTER 17. CONFORMAL ARRAYS

Keys Values

"A-"

"MATH205"

"CS239"

"B"

"ENG201" "B+"

0

1

2

3

4

5

6

7

Indexes

{Conformal Arrays

Figure 17.2: An Example of Keys and Values in Conformal Arrays

public static String getGrade(String key,
String[] courses, String[] grades) {

int i, n;

n = Array.getLength(courses);
i = 0;
while (i < n) {

if (key.equals(courses[i])) {
return grades[i];

}
++i;

}
return "NA";

}

CHAPTER 18
Segmented Arrays

Chapter 17, on conformal arrays, discusses how multiple arrays can be used
to organize records containing different fields (or tables containing rows and

columns). This chapter considers a special case of this problem in which all of the
elements of the records and fields (or rows and columns) are of the same type.

18.1 Motivation

Suppose you are working for a medical researcher who has collected data on the
heights and weights of a variety of different people. You know from Chapter 17 that
you could use two conformal arrays for this purpose, one containing the heights and
one containing the weights (with the index used to identify the individual). However,
since all of the measurements are double values, it’s also possible to organize them
in one array. Such an array is said to be segmented (or packed).

18.2 Review

Suppose you have two arrays of the same size, both of which contain double values.
One array with twice as many elements could, obviously, hold all of the values in
the two arrays. For example, suppose you have the following two arrays (each of
length 4):

double[] heights = { 60.0, 62.0, 65.0, 70.0};
double[] weights = {100.0, 110.0, 120.0, 140.0};

Then, you could store all of the elements of both arrays in one array of length 8.

107

108 CHAPTER 18. SEGMENTED ARRAYS

Index: 0 1 2 3 4 5 6 7

 60.0 62.0 65.0 70.0 100.0 110.0 120.0 140.0

Figure 18.1: The Result of Concatenating two Arrays

If you could then create an algorithm for finding/calculating the appropriate
index, you could use this single array instead of the two individual arrays. Of
course, the algorithm for finding/calculating the appropriate index is intimately
related to the way in which the single array is organized. So, the two issues must
be considered together.

18.3 Thinking About The Problem
While there are many ways of putting the elements from two arrays into one array
(with twice the size), there are two that are particularly sensible.

In the first, you would concatenate the two arrays. That is, you would put the
elements of one after the elements of the other.1 This could be accomplished as
follows:

int n = 4;
for (int i = 0; i < n; ++i) {

concatenated[i] = height[i];
}

for (int i = 0; i < n; ++i) {
concatenated[n + i] = weight[i];

}

The first loop assigns element i of height to element i of concatenated, and the
second loop assigns element i of weight to element n+i of concatenated. In other
words, the first loop assigns the four elements of height to the first four elements
of concatenated, and the second loop assigns the four elements of weight to the
last four elements of concatenated.

Though it’s not central to the point of this chapter, it should be clear to you
that this same algorithm could be implemented with a single loop as follows:

int n = 4;
for (int i = 0; i < n; ++i) {

concatenated[i] = height[i];
concatenated[n + i] = weight[i];

}

1Which comes first doesn’t matter, as long as you are consistent.

18.4. THE PATTERN 109

Index: 0 1 2 3 4 5 6 7

 60.0 100.0 62.0 110.0 65.0 120.0 70.0 140.0

Figure 18.2: The Result of Interleaving two Arrays

Regardless of the implementation, the end result is an array that is organized as in
Figure 18.1.

In the second, you would interleave the two arrays. That is, you would alternate
elements from the two arrays.2 This could be accomplished as follows:

int n = 4;
for (int i = 0; i < n; ++i) {

interleaved[2 * i] = height[i];
interleaved[2 * i + 1] = weight[i];

}

The first statement in the loop assigns elements 0, 1, 2, and 3 (i.e., the values of i)
of height to elements 0, 2, 4, and 6 (i.e., the values of 2*i) of interleaved. The
second statement in the loop assigns elements 0, 1, 2, and 3 (i.e., the values of i) of
weight to elements 1, 3, 5, and 7 (i.e., the values of 2*i+1) of interleaved. The
end result is an array that is organized as in Figure 18.2.

While both of these approaches work, the interleaved approach is more appro-
priate for the problem at hand. To see why, consider Figure 18.3, which contains a
more abstract conceptualization of the array in Figure 18.2. When interleaved, the
fields of each record are kept together, making it easier to visualize the segmented
array.

18.4 The Pattern
In general, if you let recordSize denote the number of fields in each record, record
denote the record of interest (0-based), field denote the field of interest (also 0-
based), and index denote the index of the element in the segmented array, then you
can easily convert back and forth between the two approaches.

First, given the record and field, you can calculate the index as follows:

index = (record * recordSize) + field;

This is the same algorithm used in the loop to interleave the elements.
Second, given the index, you can calculate the record and field as follows:
2Again, which comes first doesn’t matter, as long as you are consistent.

110 CHAPTER 18. SEGMENTED ARRAYS

Index: 0 1 2 3 4 5 6 7

height weight height weight height weight height weight

| Person 0 | Person 1 | Person 2 | Person 3 |

Figure 18.3: Conceptualizing the Interleaved Array of Weights and Heights

record = index / recordSize;
field = index % recordSize;

Note that this algorithm uses the techniques for arithmetic on the circle from Chap-
ter 4.

18.5 Examples
Segmented arrays are most frequently used with String objects because they can be
used to represent many other data types. One very common use involves command-
line arguments.

Recall that the main() method of a Java application has a single String[]
parameter, commonly named args. When an application is executed from the
command line, all of the String objects after the name of the main class are passed
to the main() method using this array. For example, given the following method:

public static int toIndex(int record, int field, int recordSize) {
return (record * recordSize) + field;

}

you could pass the heights and weights of multiple people into main() as an inter-
leaved array of String objects named args and “extract” information as needed.
For example, if you wanted to assign the weight and height of person 1 to the
variables w and h, respectively, you could do so as follows:

h = Double.parseDouble(args[toIndex(1, 0, 2)]);
w = Double.parseDouble(args[toIndex(1, 1, 2)]);

toIndex(1, 0, 2) evaluates to 2, so element 2 of args (i.e., "62.0" using the
data from Figure 18.2) would be passed to Double.parseDouble(), and 62.0
would be assigned to h. Similarly, toIndex(1, 1, 2) evaluates to 3, so element
3 of args (i.e., "110.0" using the data from Figure 18.2) would be passed to
Double.parseDouble(), and 110.0 would be assigned to w.

18.6. LOOKING AHEAD 111

You could, of course, include the same logic in a loop and extract all of the heights
and weights in the command-line arguments into conformal arrays as follows:

int recordSize = 2;
int records = args.length / recordSize;

for (int r = 0; r < records; ++r) {
height[r] = Double.parseDouble(args[toIndex(r, 0, recordSize)]);
weight[r] = Double.parseDouble(args[toIndex(r, 1, recordSize)]);

}

You could then work with the conformal arrays height and weight as you did in
Chapter 17.

18.6 Looking Ahead

If you take a course on systems programming you will probably work with packed
integers, a pattern that is related to segmented/packed arrays. The difference is that,
rather than working with the elements of an array, you will work with portions of
the integer (as, for example, was briefly discussed at the end of Chapter 3 on digit
manipulation and in Chapter 10 on bit flags).

For example, because of the way the eye processes light, many visual output
devices represent colors using a red component, a green component, and a blue
component, each of which can take on 256 different possible values. Since each
component can be represented in 8 bits, it is possible to represent a color using a
single 32-bit int (with 8 bits to spare).

Suppose you want to ignore the highest-order (i.e., left-most) 8 bits, use the
next 8 bits for the red component, the next 8 bits for the green component, and the
lowest-order (i.e., right-most) 8 bits for the blue component. Suppose, further, that
you want to create an int that contains the following shade of purple:

int bb, gg, rr;
rr = 69;
gg = 0;
bb = 132;

In order to create the packed 32-bit integer, you need to shift the bits in the red
component to the left by 16, the bits in the green component to the left by 8, and
leave the bits in the blue component where they are (i.e., in the least-significant
bits). Then, you need to combine them into a single int using bitwise “inclusive
or” operators. This can be accomplished as follows:

112 CHAPTER 18. SEGMENTED ARRAYS

int color;
color = 0;
color |= (rr << 16) | (gg << 8) | (bb << 0);

This int will, of course, have a value (4522116 in this case), but it is of no interest.
What’s important, is that this int has several distinct components.

To extract the red, green, and blue components from the packed int you must
invert the process. That is, you need to do a bitwise “and” with an appropriate
mask, and then shift the bits to the right (to move them to the least-significant
positions).

The masks can be defined as follows:

public static final int RED = (255 << 16);
public static final int GREEN = (255 << 8);
public static final int BLUE = 255;

Then, the components can be extracted as follows:

rr = (color & RED) >> 16;
gg = (color & GREEN) >> 8;
bb = (color & BLUE);

Part IV

Patterns Requiring Advanced
Knowledge of Arrays and

Arrays of Arrays

113

115

Part IV contains programming patterns that require a more advanced understand-
ing of arrays and an understanding of arrays of arrays (sometimes called multi-
dimensional arrays). Specifically, this part of the book contains the following pro-
gramming patterns:

Subarrays. A solution to problems in which calculations must be performed on all
of the elements of an array between two indexes.

Neighborhoods. A solution to problems in which calculations must be performed
on all of the elements of an array that are “near” a particular index.

Both of these patterns involve performing calculations on a subset of the elements
in an array. They differ in the way the subset is defined.

CHAPTER 19
Subarrays

One of Java’s most convenient features is the length attribute associ-
ated with each array. Because of this feature, it isn’t necessary to pass both

the array and its length to a method (as it is in some other languages). However, it
leads to people creating methods with inflexible signatures. The subarray pattern
is a way to remedy this shortcoming.

19.1 Motivation

Most of the examples of arrays that you have seen probably involve iterating over
all of the elements. However, there are many situations in which you only need to
iterate over some of the elements in the array. Unfortunately, because you have
only/mostly been exposed to examples in which this isn’t the case, you may have
started to use a pattern that makes this difficult (and, hence, is sometimes called
an anti-pattern).

19.2 Review

Suppose you were asked to write a method that is passed an array of int values
and returns the total. You would probably use an accumulator (see Chapter 13) as
in the following method:

117

118 CHAPTER 19. SUBARRAYS

public static int total(int[] data) {
int result;
result = 0;

for (int i = 0; i < data.length; ++i) {
result += data[i];

}
return result;

}

This method takes advantage of the fact that the number of iterations is determinate
(or definite) and uses a for loop. This method also takes advantage of the fact that
the array has a length attribute and, so, does not include it in its signature.1

The problem with this implementation is that it does not allow you to find the
sum of a subset of the elements. For example, if the indexes represent months and
the elements represent sales data, then you might want to find the total sales for
only the second quarter (i.e., April, May, and June; 0-based months 3, 4, 5).

19.3 Thinking About The Problem
Obviously, what you need to do is add formal parameters to the method that describe
the subset of interest. You could, for example, pass another array that contained
the indexes to consider. Or, you could pass a conformal boolean[] array that
contains true for the elements to use and false for the elements to ignore. In
practice, however, both of these solutions are more complicated than is necessary
because the most common need is to iterate over a contiguous subset of the elements
(i.e., loosely speaking, a subset that contains no “gaps”, or a subset in which the
difference between two sequential is exactly 1).

19.4 The Pattern
The easiest way to solve this problem of iterating over a contiguous subset of the
elements is to add two formal parameters, the index to start with and the size of
the subset.2 Traditionally, the index to start with is thought of as an offset from 0
and, hence, is named offset. The size of the subset is traditionally named length.

The example of monthly sales data can be illustrated as in Figure 19.1. As
is apparent from this illustration, the bounds on the loop control variable are now

1If you have not yet learned about the length attribute, you can instead invoke the
Array.getLength(), passing it the array.

2You could, instead, have the second parameter contain the index to end with. The approach
discussed here is more common, in part because it eliminates any confusion about whether the end
element is or isn’t included.

19.5. EXAMPLES 119

Index: 0 1 2 3 4 5 6 7 8 9 10 11

offset offset+length

Figure 19.1: The Parameters for the Second Quarter of a Year of Monthly Data

going to be offset and offset + length. As is also apparent from the illustration,
you have to be careful to use a strong inequality when comparing the loop control
variable to the upper bound (i.e., < rather that <=) to avoid an off-by-one defect.
So, the loop control variable will be initialized to offset and the iterations will
continue as long as the loop control variable is strictly less than offset + length.

The one drawback of adding these parameters is that they must be included in
every invocation of the method. To avoid this, you can add an overloaded version of
the method that is only passed the array and invokes the three-parameter version,
passing it 0 for offset and the array’s length attribute for length.

19.5 Examples

It’s trivially easy to create and find examples of this pattern.

The Motivating Example

Returning to the example above, the three-parameter version of the method is as
follows:

public static double total(double[] data, int offset, int length) {
double result;

result = 0;
for (int i = offset; i < offset + length; ++i) {

result += data[i];
}
return result;

}

The one-parameter version then invokes the three-parameter version as follows:

public static double total(double[] data) {
return total(data, 0, data.length);

}

120 CHAPTER 19. SUBARRAYS

Examples in the Java Library

Examples of this pattern abound in the Java library. For example, this pattern is
used by the fill() methods and the copyOfRange() method in the Arrays class,
and the arraycopy() method in the System class.

A Less Obvious Example

The same kind of thing can be done with rectangular arrays of arrays (sometimes
called multidimensional arrays). In this case, the flexible method is as follows:

public static double total(double[][] data,
int roffset, int coffset,
int rlength, int clength) {

double result;

result = 0;
for (int r = roffset; r < roffset + rlength; ++r) {

for (int c = coffset; c < coffset + clength; ++c) {
result += data[r][c];

}
}
return result;

}

The one-parameter version then invokes the five-parameter version as follows:

public static double total(double[][] data) {
return total(data, 0, 0, data.length, data[0].length);

}

19.6 A Warning
It is possible for the invoker to pass an invalid offset and/or invalid length. Hence,
you should validate these parameters and respond to invalid values appropriately.

There are two common responses to invalid values. One is to throw an
IllegalArgumentException. The other is to use 0 for values of offset that are
too small, the array’s length for values of offset that are too large, and the array’s
length for values of offset + length that are too large.

CHAPTER 20
Neighborhoods

The subarrays pattern, discussed in Chapter 19, considers some problems
in which calculations need to be performed on only some of the elements of

an array. The solution in that chapter is appropriate only for problems in which
the subarray is defined using an offset and a length. This chapter again considers
situations in which calculations need to be performed on only some of the elements,
but those elements are now conceptualized as a neighborhood around a particular
element.

20.1 Motivation

To blur a discretized audio track or visual image, you must calculate the (weighted)
average of the elements that are in the neighborhood of a particular element. For
an array (which might, for example, contain a sequence of amplitude measurements
of an audio track), such neighborhoods have an odd number of elements and are
centered on the element of interest. Such a neighborhood is illustrated in Figure 20.1.

For an array of arrays (which might, for example, contain the color values of the
pixels in an image), such neighborhoods are square with an odd number of elements,
and are centered around the element of interest. Such a neighborhood is illustrated
in Figure 20.2.

Figure 20.1: A Neighborhood of Size 3 around Element 4

121

122 CHAPTER 20. NEIGHBORHOODS

Figure 20.2: A 5× 5 Neighborhood around Element (3, 3)

20.2 Review

If you were to use the subarrays pattern from Chapter 19, you would describe the
subset of the elements in Figure 20.1 using an offset of 3 and a length of 3. Sim-
ilarly, you would describe the subset of the elements in Figure 20.2 using a roffset
(row offset) of 1, a coffset (column offset) of 1, a rlength (row length) of 5, and
a clength (column length) of 5. While there would be nothing technically wrong
with this solution, it is not consistent with the conceptual notion of a neighborhood
around an element. In other words, it is not consistent with the way domain experts
think about the problem.

20.3 Thinking About The Problem

When domain experts think about the blurring problem, they think about calcu-
lating the weighted average of the elements that are near a center element. Exactly
what this means differs with the domain and the dimensionality of the data.

For an array (e.g., a sequence of amplitude measurements from a discretized
sound wave), each element is identified by a single index. So, you need one value to
represent the center of the neighborhood and one (odd) value to represent the size
of the neighborhood.

For a rectangular array of arrays (e.g., a raster/grid of color measurements), each
element is identified by two indexes, commonly called the row index and column
index. So, you need two integer values to represent the center of the neighborhood.

20.4. THE PATTERN 123

Then, if you limit yourself to square neighborhoods (as is common), the size of the
neighborhood can be represented by a single (odd) integer.

20.4 The Pattern

As in the subarray pattern of Chapter 19, you need to add formal parameters to
the signature of the method you are concerned with. Methods that are passed an
array will have two additional parameters (the index and the size), and methods
that are passed an array of arrays will have three additional parameters (the row
index, col index, and size).

Also as in the subarrays pattern, you need to calculate the bounds on the loop
control variables. While this was quite simple for subarrays, for neighborhoods it’s
a little more complicated. Returning to Figures 20.1 and 20.2, you can see that
you want to have the same number of elements on both sides of the center element.
Using integer division, this means that you want to have size/2 elements on both
sides of the center element.

For an array, this means that the lower bound will be given by index - size/2
and the upper bound will be given by index + size/2. For an array of arrays, this
means that the lower bound for the rows will be given by row - size/2, the upper
bound for the rows will be given by row + size/2, the lower bound for the columns
will be given by col - size/2, and the upper bound for the columns will be given
by col + size/2.

Of course, as always, care must be taken about whether to use a weak inequality
or a strong inequality. In this case, a weak inequality is needed to ensure the
elements on the boundary are included in the neighborhood. To see why, first
consider the array in Figure 20.1. In this example, index is 4 and size is 3. So,
size/2 is 1, meaning that the bounds are 4 - 1 (i.e., 3) and 4 + 1 (i.e., 5).

20.5 Examples

As always, it’s instructive to consider some examples.

Some Obvious Examples

One way to implement the blurring operations discussed in the introduction of this
chapter is to use an accumulator (as in Chapter 13) to calculate a neighborhood
average. For an array (e.g., a sampled audio clip), this can be implemented as
follows:

124 CHAPTER 20. NEIGHBORHOODS

public double naverage(double[] data, int index, int size) {
double total;
int start, stop;

start = index - size / 2;
stop = index + size / 2; // Equivalently: stop = start + size
total = 0.0;
for (int i = start; i <= stop; i++) {

total += data[i];
}
return total / (double) size;

}

For an array of arrays (e.g., a raster representation of an image), this can be
implemented as follows:

public double naverage(double[][] data, int row, int col, int size) {
double total;
int cstart, cstop, rstart, rstop;

rstart = row - size / 2;
rstop = row + size / 2;
cstart = col - size / 2;
cstop = col + size / 2;

total = 0.0;
for (int r = rstart; r <= rstop; r++) {

for (int c = cstart; c <= cstop; c++) {
total += data[r][c];

}
}
return total / (double) (size * size);

}

A Less Obvious Examples

You might also need to use a “plus-sign-shaped neighborhood” in which only the
elements in the row or column of the center element are included. You could, use
an if statement to include only the appropriate elements. Alternatively, you could
use two loops, one that iterates over the elements with the same row and one that
iterates over the elements that have the same column, as follows:

20.5. EXAMPLES 125

public double paverage(double[][] data, int row, int col, int size) {
double total;
int count, cstart, cstop, rstart, rstop;

rstart = row - size / 2;
rstop = row + size / 2;
cstart = col - size / 2;
cstop = col + size / 2;

total = 0.0;
count = 0;
for (int r = rstart; r <= rstop; r++) {

total += data[r][col];
++count;

}

for (int c = cstart; c <= cstop; c++) {
total += data[row][c];
++count;

}

// Eliminate the double counting
total -= data[row][col];
--count;

return total / (double) count;
}

Finally, you could use an array (or array of arrays) of indicators, as discussed
in Chapter 6, to control which elements are included. The shape and size of the
indicator array (or array of arrays) would correspond to the shape and size of the
neighborhood. Indexes to be included in the calculation would have an indicator of
1 and indexes to be excluded would have an indicator of 0. The indicator would
then be multiplied by the calculation. Regardless of the approach, you have to
correctly count the elements that are in the total.

Using the Subarray Pattern

Obviously, the neighborhoods pattern and the subarray pattern are closely related,
even though they differ conceptually and in the particular parameters that are used.
Hence, one can easily combine them. For example, the method for calculating the
neighborhood average could use the method for calculating the total of a subarray,
rather than duplicate that code, as follows:

126 CHAPTER 20. NEIGHBORHOODS

public double naverage(double[] data, int index, int size) {
double sum;
int offset;

offset = index - size / 2;
sum = total(data, offset, size);
return sum / (double) size;

}

There is one important subtlety here, that you shouldn’t ignore. The intervals in
the neighborhood pattern are closed whereas the intervals in the subarray pattern
are half open (i.e., open on the right).

20.6 A Warning
As with the subarray pattern of Chapter 19, the invoker can pass invalid param-
eters. Hence, you should validate these parameters and respond to invalid values
appropriately (either by throwing an exception or using valid default values).

Part V

Patterns Requiring Knowledge
of String Objects

127

129

Part V contains programming patterns that require an understanding of String
objects. Specifically, this part of the book contains the following programming
patterns:

Centering. Solutions to problems that involve the centering of content (of various
kinds) in containers (of various kinds).

Delimiting Strings. Solutions to problems that are similar to the problem of in-
serting commas between the words in a list.

Dynamic Formatting. A solution to problems that require the format of a String
to be determined dynamically (i.e., at run-time rather than at compile-time).

Pluralization. A solution to the problem of creating both regular and irregular
pluralizations.

The first three patterns in this part of the book all use an accumulator and some
other logic to solve their associated problems. The pluralization pattern is really
nothing more than a clever use of methods.

CHAPTER 21
Centering

Many applications need to center content (of some kind) inside a container
(of some kind). Though the content and the containers can vary dramatically,

the pattern used to do the centering is very consistent.

21.1 Motivation
Suppose you have some text that you need to display on the console, centered on the
line containing it. Since the console (typically) uses a fixed-width font, the width
of every character (measured in pixels) is the same. As a result, both the width of
the text and the width of the line can be measured in characters. Your objective,
then, is to determine the column of the line that should contain the first character
of the text.

21.2 Review
The text in this example is going to be represented as a String object. So, you can
use its length()method to determine the number of characters in it. Unfortunately,
you have no way of specifying the column of the display to print to when writing to
the console.1 Hence, you have to create or output a String that is padded on the
left with the appropriate number of spaces, which you can do using an accumulator
(see Chapter 13). The only problem that remains, then, is the determination of the
appropriate number of spaces.

1This is not true of all consoles. Some allow you to use control sequences to specify the column
(and row) to write to. However, these capabilities are not normally discussed in introductory
programming courses. In addition, even with such a console, the centering pattern is needed to
find the row or column. Such a console just eliminates the need to pad the String.

131

132 CHAPTER 21. CENTERING

21.3 Thinking About The Problem
Suppose that the line is nine characters wide and 0-based (i.e., the first character
is at position 0). Then, you know that the middle character in the line has index
4 (i.e., 9 / 2, using integer division), since there are four characters to the left of
index 4 and four characters to the right of index 4.

Suppose further that the text is five characters wide and is also 0-based. Then,
you know that the middle character of the text has index 2 (i.e., 5 / 2), since there
are two characters to the left of index 2 and two characters to the right of index 2.

So, in order to center the text in the line, you want character 2 of the text to
be at position 4 of the line. This means that character 0 of the text must be at
position 2 of the line.

21.4 The Pattern
The centering pattern is nothing more than a generalization of this example. First,
instead of text, you should think more generally about content. Second, instead of
a line, you should think more generally about a container. Both the content and the
container have an extent that generalizes the notion of the width in the example,
and a reference that generalizes the notion of a starting character.

The centering problem is to find the reference for the content, given the reference
and extent of the container and the extent of the content. Letting C denote the
container, c denote the content, and the superscripts R, E and M denote the refer-
ence extent, and midpoint respectively (for each dimension), the centering pattern
involves three steps.

First, you need to calculate the midpoint of the container (which had a reference
of 0 and an extent of 9 in the example). You can do this as follows:

CM = CR + (CE/2)

Next, you need to calculate the midpoint of the content (which had a width of 5 in
the example). You can do this as follows:

cM = (cE/2)

Finally, you need to calculate the reference for the content by subtracting the mid-
point of the content from the midpoint of the container. That is:

cR = CM − cM

In one dimension (i.e., when the references and the extents can be represented
by a single number) as in the text example, this algorithm can be implemented as
follows:

21.5. EXAMPLES 133

public static double center(double containerReference,
double containerExtent,
double contentExtent) {

double containerMidpoint = containerReference + containerExtent / 2.0;
double contentMidpoint = contentExtent / 2.0;
double contentReference = containerMidpoint - contentMidpoint;

return contentReference;
}

Of course, many problems are not one dimensional. For example, images and
windows have both a width and a height, and their positions are specified with both
a horizontal and a vertical coordinate. Fortunately, the logic is exactly the same for
all of the dimensions. Hence, if both the extents and the references are represented
as conformal arrays (see Chapter 17), then you can perform the calculations for each
dimension independently in the body of a loop as follows:

public static double[] center(double[] containerReference,
double[] containerExtent,
double[] contentExtent) {

int n = containerReference.length;
double[] contentReference = new double[n];

for (int i = 0; i < n; ++i) {
double containerMidpoint = containerReference[i]

+ containerExtent[i] / 2.0;

double contentMidpoint = contentExtent[i] / 2.0;

contentReference[i] = containerMidpoint - contentMidpoint;
}
return contentReference;

}

21.5 Examples
Unlike the other patterns in this book, for this pattern it is useful to consider some
examples that don’t involve the use of any code.

A One-Dimensional Example

An example of centering in one dimension is illustrated in Figure 21.1. The upright
numbers in this figure are the inputs, and the italicized numbers in this figure are
the calculated values. This example might, again, involve centering text, but the

134 CHAPTER 21. CENTERING

0 8

Container

Container Extent (CE)

Origin

14

Content

16.5

2.5

Reference (CR)
5

17

Extent (cE)

8.5

Figure 21.1: Centering in One Dimension

objective now is to center the text within a portion of a line (e.g., a field with a
given width). In this example, the content (i.e., the text) has a width of 4, and the
field has a width of 17 and starts in column 8.

You should begin with the container’s reference and the container’s extent, and
use them to calculate the container’s midpoint as follows:

CM = CR + (CE/2)
= 8 + (17/2)
= 8 + 8.5
= 16.5

In other words, it’s necessary to move 8.5 units to the right of the container’s
reference of 8 to get the container’s midpoint of 16.5.

Then, you can calculate the content’s reference as follows:

cR = CM − (cE/2)
= 16.5− (5/2)
= 16.5− 2.5
= 14

In other words, it’s necessary to move 2.5 units (half of the content’s width) to the
left of the container’s midpoint to get the content’s reference.

A Two-Dimensional Example

An example of centering in two dimensions is illustrated in Figure 21.2. Again, the
upright numbers are the inputs, while the numbers in italics are calculated. This
example might involve centering an image inside of a window in a graphical user
interface (GUI). In this context, the content (i.e., the image) has a width of 6 and

21.6. SOME WARNINGS 135

5

30

Origin
17 20

7

9

13 128

6

Figure 21.2: Centering in Two Dimensions

a height of 8 (i.e., is 6× 8), and the container (i.e., the window) has a width of 30
and a height of 12 (i.e., is 30× 12).

21.6 Some Warnings

The pattern above can be used in a wide variety of situations, but there are some
things that you should be aware of.

Coordinate Systems

All of the figures and examples in this chapter use Euclidean coordinates in which
the horizontal coordinates increase from left to right, and the vertical coordinates
increase from bottom to top. However, computer graphics tend to use screen co-
ordinates in which the horizontal coordinates increase from left to right but the
vertical coordinates increase from top to bottom. This means that the sign
of the adjustments in the vertical dimension must be negated.

Using Integers

The code above assumes that the references and extents are all double values.
However, the text example uses int values (since the content must be an integer
and the column positions are integers). Fortunately, with a little care, the pattern
can be used for both int values and double values.

136 CHAPTER 21. CENTERING

The first thing to realize is that, if either of the extents is even, then the content
can’t be perfectly centered. The calculated integer midpoint will either “lean” to
the left or the right of the conceptual real-valued center.

The second thing to realize is the impact of integer division and how it differs
depending on whether the extent is odd or even. To get started thinking about this
issue, just use the pattern exactly as it is implemented above, replacing the double
values with int values, and consider the container and the content individually.

When the extent of the container is odd, the calculated midpoint will be at
the conceptual center. For example, when the extent is 9 as in the text example
above, the midpoint is 9 / 2 or 4, which leaves 4 characters to the left (i.e., indexes
0, 1, 2, and 3) and 4 characters to the right (i.e., indexes 5, 6, 7, and 8). On the
other hand, when the extent of the container is even, the calculated midpoint will
“lean” right. For example, when the extent is 8, the midpoint is 8 / 2 or 4, which
leaves 4 characters to the left (i.e., indexes 0, 1, 2, and 3) but only 3 characters to
the right (i.e., indexes 5, 6, 7).

When the extent of the content is odd, the calculated midpoint will again be
at the conceptual center. For example, when the extent is 5 as in the text example
above, the midpoint is 5 / 2 or 2, which leaves 2 characters to the left (i.e., indexes
0 and 1) and 2 characters to the right (i.e., indexes 3 and 4). So, the leftward
adjustment will be 2 characters. On the other hand, when the extent of the content
is even, the calculated midpoint will again “lean” right. For example, when the
extent is 4, the midpoint is 4 / 2 or 2, which leaves 2 characters to the left (i.e.,
indexes 0 and 1) but only 1 characters to the right (i.e., index 3). So, the leftward
adjustment will still be 2 characters.

Putting all of this together, leads to the following conclusions:

• When the container has an extent of 9, the reference of the content will be 4
- 2 or 2 whether the content has an extent of 5 or 4. Hence, when the content
has an extent of 5 it will be exactly centered, and when the content has an
extent of 4 it will “lean” to the left by one character.

• When the container has an extent of 8, the reference of the content will be 4
- 2 or 2 whether the content has an extent of 5 or 4. Hence, when the content
has an extent of 5 it will “lean” to the right by one character, and when the
content has an extent of 4 it will be exactly centered.

In other words, the “lean” will be at most one character (which is as small as it can
be).

Of course, if you want the “lean” to be consistently in one direction or the other,
then you can adjust the algorithm slightly depending on whether the extents are
odd or even. Fortunately, you can easily identify these cases using the arithmetic
on the circle pattern discussed in Chapter 4.

21.6. SOME WARNINGS 137

Clipping

The examples in this chapter assume that the container is large enough (in all di-
mensions) to hold the content. When this is not the case, the content may need to be
clipped to fit in the container. Fortunately, the logic for doing so is straightforward.

CHAPTER 22
Delimiting Strings

Many programs, whether they have a textual user interface or a graphical user
interface, need to combine an array of String objects into a single String

object that has a delimiter between every pair of elements. There are several ways
of accomplishing this goal.

22.1 Motivation

Suppose you want to generate the String "Rain,Sleet,Snow" from a String[]
containing the elements "Rain", "Sleet", and "Snow". One way to think about
the desired result is that there is a comma (the delimiter) between every pair of
elements. A second way to think about the desired result is that there is a comma
after every item except the last one. A third way to think about the desired result
is that there is a comma before every item except the first one. As it turns out,
each leads to a different implementation.

22.2 Review

Since you are going to iterate over the String[] array and consider each element
individually, the first conceptualization is a little awkward to deal with. Specifically,
you will need to consider both element i and i-1 or i+1 at each iteration. If you
work with index i-1 you will need to ensure that there are two elements and then
initialize the loop control variable to 1. If you work with index i+1 you will need to
ensure that there are two elements and then terminate the loop at the length of the
array minus two. Neither is impossible, but both seem unnecessarily complicated if
they can be avoided. Fortunately, both of the other conceptualizations only require

139

140 CHAPTER 22. DELIMITING STRINGS

you to work with one element at a time using an accumulator (as discussed in
Chapter 13) so the first conceptualization won’t be considered.

22.3 Thinking About The Problem
The other two conceptualizations differ in that one appends the delimiter after
concatenating an element to the accumulator, and the other prepends the delimiter
before concatenating an element to the accumulator

Appending the Delimiter

The second conceptualization requires you to append the delimiter after every item
except the last one. Assuming item contains the String[] and delim contains the
delimiter, this can be implemented as follows:

// Append the delimiter when needed
result = "";
for (int i = 0; i < item.length; ++i) {

result += item[i];
if (i < item.length - 1) {

result += delim;
}

}

It is also possible to treat an array of length 1 as a special case, initializing
the accumulator accordingly, and then starting with element 1 as in the following
implementation:

// Append the delimiter when needed, initializing
// the accumulator based on the length
if (item.length > 1) {

result = item[0] + delim;
} else if (item.length > 0) {

result = item[0];
} else {

result = "";
}

for (int i = 1; i < item.length - 1; ++i) {
result += item[i];
result += delim;

}

if (item.length > 1) {
result += item[item.length - 1];

}

22.4. THE PATTERN 141

This eliminates the need for an if statement within the loop.

Prepending the Delimiter

The third conceptualization requires you to prepend the delimiter before every item
except the first one. This can be implemented as follows:

// Prepend the delimiter when needed
result = "";
for (int i = 0; i < item.length; ++i) {

if (i > 0) {
result += delim;

}
result += item[i];

}

Again, the if statement in the loop can be eliminated by treating element 0 as
a special case, as follows:

// Prepend the delimiter when needed, initializing
// the accumulator based on the length
if (item.length > 0) {

result = item[0];
} else {

result = "";
}

for (int i = 1; i < item.length; ++i) {
result += delim + item[i];

}

22.4 The Pattern

At first glance, you might not prefer one solution to the other. However, if you con-
sider a slight variant of the problem, your assessment might change. In particular,
suppose you want to be able to use a different delimiter before the last element.
Specifically, suppose you want to generate the String "Rain, Sleet and Snow".
You now need to distinguish the “normal” delimiter (the comma and space) from
the “last” delimited (the word “and” surrounded by spaces).

The append approach can be implemented with the if statement in the loop as
follows:

142 CHAPTER 22. DELIMITING STRINGS

// Append the delimiter when needed
result = "";
for (int i = 0; i < item.length; ++i) {

result += item[i];
if (i < item.length - 2) {

result += delim;
} else if (i == item.length - 2) {

result += lastdelim;
}

}

and without the if statement in the loop as follows:

// Append the delimiter when needed, initializing
// the accumulator based on the length
if (item.length > 2) {

result = item[0] + delim;
} else if (item.length > 1) {

result = item[0] + lastdelim;
} else if (item.length > 0) {

result = item[0];
} else {

result = "";
}

for (int i = 1; i < item.length - 2; ++i) {
result += item[i];
result += delim;

}

if (item.length > 2) {
result += item[item.length - 2] + lastdelim + item[item.length - 1];

} else if (item.length > 1) {
result += item[item.length - 1];

}

The prepend approach can be implemented with the if statement in the loop
as follows:

22.4. THE PATTERN 143

// Prepend the delimiter when needed
result = "";
for (int i = 0; i < item.length; ++i) {

if (i > 0) {
if (i < item.length - 1) {

result += delim;
} else if (i == item.length - 1) {

result += lastdelim;
}

}
result += item[i];

}

and without the if statement in the loop as follows:

// Prepend the delimiter when needed, initializing
// the accumulator based on the length
if (item.length > 0) {

result = item[0];
} else {

result = "";
}

for (int i = 1; i < item.length - 1; ++i) {
result += delim;
result += item[i];

}

if (item.length > 1) {
result += lastdelim + item[item.length - 1];

}

Whether to have the if statement in the loop or not is subject to debate.
However, the implementations that have the if statement inside of the loop seem
more elegant (though less efficient) than those that do not. Choosing between the
two implementations that have if statements in the loop is easier. The prepend
approach requires either nested if statements or a single if statement with multiple
conditions, so the append approach is more elegant.1

This leads to a programming pattern that consists of two methods. One method
has three parameters, the String[], the “normal” delimiter, and the “last” delim-
iter, and uses the append approach. The other method has two parameters, the
String[] and the delimiter, and simply invokes the three-parameter version. These
two methods can be implemented as follows:

1If we wanted to use a different delimiter between the first two elements the better solution
might be different. That capability is rarely required, however.

144 CHAPTER 22. DELIMITING STRINGS

public static String toDelimitedString(String[] item,
String delim, String lastdelim) {

String result;

result = "";
for (int i = 0; i < item.length; ++i) {

result += item[i];
if (i < item.length - 2) {

result += delim;
} else if (i == item.length - 2) {

result += lastdelim;
}

}
return result;

}

public static String toDelimitedString(String[] item, String delim) {
return toDelimitedString(item, delim, delim);

}

22.5 Examples
Delimited strings get used in both the formatting of numerical data and the format-
ting of textual information. This pattern can easily be used for both.

One common way of formatting data is called comma separated values (CSV),
which uses a comma as the delimiter between the different fields in a record. Two
other common ways of formatting data are tab-delimited and space-delimited. Noth-
ing special needs to be done to handle any of these schemes; simply use the two-
parameter version of the method.

When formatting text, there are two common approaches. Both append a
comma after every word but the penultimate and ultimate words. Both also ap-
pend the word “and” after the penultimate word. They differ in whether or not
the “and” is preceded by a comma. For example, some style guides use only the
word “and” (as in “rain, sleet and snow”) while others use both a comma and the
word “and” (as in “rain, sleet, and snow”). The last comma is commonly known as
the Oxford comma. You could change the logic in the solution above to handle the
Oxford comma by making the strong inequality a weak inequality and eliminating
the else. However, it’s much better just to change the final delimiter from " and
" to ", and ".

CHAPTER 23
Dynamic Formatting

It is almost impossible to get this far in an introductory programming course
without making extensive use of format specifiers (e.g., with the printf()

method in the PrintWriter class or the format() method in the String class).
However, most, if not all, of the format specifiers you have seen and/or used have
probably been hard-coded. It turns out that there are many situations in which
format specifiers must be created while a program is running.

23.1 Motivation

If you want to print all of the elements of a non-negative int[] in a field of width
10, it’s easy to do so using the format specifier "%10d" as follows:

for (int i = 0; i < data.length; i++) {
System.out.printf("%10d\n", data[i]);

}

However, now suppose, instead, that you want the field to be as narrow as possible.
Since you can’t know the value of the elements of the array when you are writing
the program, you can’t hard-code the format specifier.

23.2 Review

Fortunately, you already have some patterns that can help you solve this problem.
First, from the discussion of accumulators in Chapter 13, you know that you can
find the largest int in an int[] named data as follows:

145

146 CHAPTER 23. DYNAMIC FORMATTING

max = -1;
for (int i = 0; i < data.length; i++) {

if (data[i] > max) max = data[i];
}

Second, from the discussion of digit counting in Chapter 11, you know that you
can find the number of digits in an int value named max as follows:

width = (int) (Math.log10(max)) + 1;

So, all you need to complete the solution to the dynamic formatting problem is a
format specifier.

23.3 Thinking About The Problem
Fortunately, the format specifier is a String object, and you can construct and
manipulate String objects while a program is running. For example, returning to
the situation in which you want to use a field of width 10, you could use a String
variable named fs for the format String as follows:

fs = "%10d\n";

for (int i = 0; i < data.length; i++) {
System.out.printf(fs, data[i]);

}

Now, all you need to do is replace the hard-coded 10 in fs with the value contained
in a variable.

23.4 The Pattern
In particular, what you need to do is use String concatenation (or a StringBuilder
object) to construct the format String. Recall that a format specifier has the
following syntax:

%[flags][width][.precision]conversion

where:

flags is one or more of: - to indicate left-justification, + to indicate required
inclusion of the sign, , to include grouping separators, etc.

23.5. EXAMPLES 147

width indicates the width of the field

precision indicates the number of digits to the right of the decimal point for real
numbers

conversion is one of b for a boolean, c for a char, d for an integer, f for a real
number, s for a String, etc.

and items in square brackets are optional.
So, assuming all of the variables have been declared, you can construct a format

specifier at run-time as follows:

fs = "%";
if (flags != null) fs += flags;
if (width > 0) fs += width;
if (precision > 0) fs += "." + precision;
fs += conversion;

23.5 Examples

Suppose you want to illustrate the non-repeating nature of the digits of π by printing
a table in which the first line contains one digit to the right of the decimal point,
the second contains two digits to the right of the decimal point, etc. To accomplish
this you need to construct the format specifier inside of a loop, and print Math.PI
using that format specifier at each iteration. This can be accomplished as follows:

for (int digits = 1; digits <= 10; digits++) {
fs = "%" + (digits + 2) + "." + digits + "f\n";
System.out.printf(fs, Math.PI);

}

Note that this example uses digits + 2 to account for the leading 3. in the output.
As another example, suppose you want to create a String called result from a

String called source, and you want result to satisfy the following specifications:

1. It must have width characters in total; and

2. The characters in source must be centered within result.

You know from the discussion of centering in Chapter 21 that there must be width
- source.length() spaces in result with “half” of them to the left of source and
“half” of them to the right of source. This can be accomplished as follows:

148 CHAPTER 23. DYNAMIC FORMATTING

@SuppressWarnings("checkstyle:needbraces")
public static String center(String source, int width) {

int field, n, append;
String fs, result;

// Calculate the number of spaces in the resulting String
n = width - source.length();
if (n <= 0) return source;

// Calculate the width of the field for source (it will be
// right-justified in this field)
field = (width + source.length()) / 2;

// Calculate the number of spaces to append to the right
append = width - field;

// Build the format specifier
fs = "%" + field + "s%" + append + "s";

result = String.format(fs, source, " ");
return result;

}

The source will be right justified in a field that is (width/2 -
source.length())/2 characters wide and it will be followed by a single space that
will be right justified in a field that is as wide as is necessary to fill the field.

CHAPTER 24
Pluralization

Programs often need to create output strings that contain different
words/phrases depending on the value of an associated integer. There are

many different ways to solve this problem, but most of them are awkward, at best.

24.1 Motivation

For example, suppose you are writing a program for a local animal shelter that must
produce the output “There is 1 poodle available for adoption.” when they have one
poodle and “There are 3 poodles available for adoption.” when they have three
poodles. There are two differences between these two sentences: the “is”/“are”
distinction and the “poodle”/“poodles” distinction, both of which can be thought
of as pluralization problems.

24.2 Review

You could, of course, treat this as an isolated problem. For example, assuming the
variable n contains the number of poodles, you could solve this problem as follows:

if (n == 1) {
result = "There is 1 poodle available for adoption.";

} else {
result = "There are " + n + " poodles available for adoption.";

}

However, the amount of duplication in the two String literals makes this solution
prone to error; typing them both exactly as wanted is difficult and it is easy to make

149

150 CHAPTER 24. PLURALIZATION

mistakes when copying, pasting, and editing the copy. Hence, you might instead
solve this specific problem as follows:

result = "There";

if (n == 1) result += " is";
else result += " are";

result += " " + n + " poodle";

if (n > 1) result += "s";

result += " available for adoption.";

Unfortunately, it’s easy to get careless (and lazy) in situations like this. Hence, it
would be nice to have a more generic solution.

24.3 Thinking About The Problem

You’d probably like to be able to construct a String in one form (e.g., the singular)
and then invoke a method (e.g., pluralize()) that converts it to the other form
(e.g., the plural). However, this kind of natural language processing (NLP) problem
is very difficult to solve, and such a method would be far too computationally
burdensome and unreliable for most applications.1 Fortunately, however, you speak
English and are very good at converting from one form to another. So, the solution
to the problem is to harness your ability to pluralize in a convenient way.

24.4 The Pattern

The solution starts with a simple method that returns either the singular or plural
form of a word (both of which you provide to the method), based on the value of
another parameter:

public static String form(int n, String singular, String plural) {
if (n > 1) return plural;
else return singular;

}

Then, you simply create a bunch of specific methods that use this method.
1An artificial/contrived solution of this kind is sometimes called a Deus ex machina, which is

Latin for “god from the machine”.

24.5. EXAMPLES 151

24.5 Examples
Continuing with the animal shelter example, you first need the following method
for the word “is”/“are”:

public static String is(int n) {
return form(n, "is", "are");

}

You then need the following method for adding an “s” to regular nouns:

public static String regular(int n, String noun) {
return noun + form(n, "", "s");

}

Assuming all of these methods are in a class named Pluralize, they can then
be used with a regular noun like “poodle” as follows:

result = "There " + Pluralize.is(n) + " "
+ n + " " + Pluralize.regular(n, "poodle")
+ " available for adoption.";

and with an irregular noun like “mouse” as follows:

result = "There " + Pluralize.is(n) + " "
+ n + " " + Pluralize.form(n, "mouse", "mice")
+ " available for adoption.";

Finally, an irregular noun like “sheep” could either be handled as in the “mouse”
example, or as follows:

result = "There " + Pluralize.is(n) + " "
+ n + " sheep available for adoption.";

Part VI

Patterns Requiring Knowledge
of References

153

155

Part VI contains programming patterns that require an understanding of objects
and references, and parameter passing. Specifically, this part of the book contains
the following programming patterns:

Chained Mutators. A solution to the problem of invoking multiple different
methods on the same object, one right after another.

Outbound Parameters. A solution to the problem of needing to return multiple
pieces of information from a single method.

Missing Values. A solution to the problem of distinguishing missing values from
actual values so that they can be handled differently when performing calcu-
lations of various kinds.

Checklists. A solution to the problem of checking to see whether a specific set of
criteria (identified at run-time) have been satisfied.

The chained mutators pattern involves the return of a reference, while the out-
bound parameters pattern involves passing references. The missing values pattern
takes advantage of the “special” reference null. Finally, the checklists pattern is a
generalization of the bit flags pattern that allows for the set of criteria to be created
dynamically (i.e., at run-time).

CHAPTER 25
Chained Mutators

Examples abound in which a method is invoked on the value returned by an-
other method without assigning the returned value to an intermediate variable.

Opinions differ, among programmers at all levels, about the efficacy of this practice.
Nonetheless, it is quite common. Hence, it is important to consider how this behav-
ior can be taken into account when implementing methods that might be chained
in this way.

25.1 Motivation
Suppose you need to construct an email address from a String variable named user
containing the user’s name and a String variable named university containing the
university’s name. Suppose, further, that for efficiency reasons you want to use a
StringBuilder rather than String concatenation.

One way to implement this is as follows:

StringBuilder sb = new StringBuilder();
sb.append(user);
sb.append("@");
sb.append(university);
sb.append(".edu");

In this implementation, each call to append() simply modifies the state of the
StringBuilder as required.

While this works, it’s somewhat messier than using String concatenation, be-
cause it requires multiple statements. What you might like to do, instead, is take
advantage of the efficiency of the StringBuilder class without the added messiness.
In principal, you could accomplish this using invocation chaining as follows:

157

158 CHAPTER 25. CHAINED MUTATORS

StringBuilder sb = new StringBuilder();
sb.append(user).append("@").append(university).append(".edu");

However, this will only work if the append() method is implemented with this kind
of functionality in mind.

25.2 Review
Now, consider a different, but related, example. Suppose you are working with a
File object that encapsulates the current working directory, and you want to know
how many characters are in its name. This can be accomplished as follows:

File cwd = new File(".");
String path = cwd.getCanonicalPath();
int length = path.length();

However, since there’s no need for the intermediate variable path, many people
prefer the following chained implementation:

File cwd = new File(".");
int length = cwd.getCanonicalPath().length();

This chained implementation works because the getCanonicalPath() method
in the File class returns (and evaluates to) a String object, and the String class
has a length() method.

25.3 Thinking About The Problem
Though they are similar on the surface, the email example and the path example
are quite different. In the path example, the methods do not change the state of
their owning objects. That is, the getCanonicalPath() method is an accessor not
a mutator (i.e., it does not change the state of its File object; it returns a String
object) and the length() method is also an accessor not a mutator (i.e., it does not
change the state of its String object, it returns an int). On the other hand, in the
email example, the append() method does change the state of its StringBuilder
(i.e., it is a mutator and does not need to return anything).

So, while it is easy to see why you can use invocation chaining in the path
example, it does not seem like you should be able to do so in the email example.
Indeed, in order for you to be able to use invocation chaining in the path example,
the append() method must return the StringBuilder that it is modifying.

25.4. THE PATTERN 159

25.4 The Pattern

This motivating example can be generalized to create a pattern that solves the
chained mutator problem. Specifically, if you want to be able to use invocation
chaining to change an object, then the mutator methods that are to be chained
must return something that a subsequent method in the chain can be invoked on.
But, it can’t just return anything; it must return an object of the appropriate type
(i.e., an object of the same type as the owning object). But, even that isn’t enough
— it must actually return the owning object itself. That is, the mutator must return
the reference to the owning object, this.

The StringBuilder class uses this idea, for exactly this reason. The methods
append(), delete(), insert(), replace(), and reverse() all return this so that
their invocations can be chained. So, in the example, sb.append(user) returns
this (i.e., a reference to sb), append("@") is then invoked on sb, and so on.

25.5 An Example

Suppose you want to create an encapsulation of a Robot that keeps its location in one
or more attributes and is able to move in four directions (forward, backward, right
and left). You clearly need one or more mutator methods to handle the movements.
Suppose further that you decide to have a mutator method for each direction, named
moveBackward(), moveForward(), moveLeft(), and moveRight().

If you were not interested in supporting invocation chaining, then these methods
would be void (i.e., they would not return anything), and they could be used as in
the following example:

Robot bender = new Robot();
bender.moveForward();
bender.moveForward();
bender.moveRight();
bender.moveForward();

However, if you are interested in invocation chaining, these methods must, in-
stead, return a reference to the owning object, as in the following implementation:

160 CHAPTER 25. CHAINED MUTATORS

public class Robot {
private int x, y;

public Robot() {
x = 0;
y = 0;

}

public Robot moveBackward() {
y--;
return this;

}

public Robot moveForward() {
y++;
return this;

}

public Robot moveLeft() {
x--;
return this;

}

public Robot moveRight() {
x++;
return this;

}

public String toString() {
return String.format("I am at (%d, %d).", x, y);

}
}

You can then use this object as follows:

Robot bender = new Robot();
bender.moveForward().moveForward().moveRight().moveForward();

Many people think the chained invocation is much more convenient than having
to use a separate statement for each movement. And, of course, if you want to have
a separate statement for each movement you can; you just ignore the return value
(as in the original example).

25.6. A WARNING 161

25.6 A Warning
It is very important to document chainable mutator methods, and methods that
look like chainable mutator methods, carefully. This need is made apparent by the
String and StringBuilder classes.

For example, the toLowerCase() and toUpperCase() methods in the String
class could easily be mistaken for mutators. In fact, if you didn’t know that String
objects were immutable, you would almost certainly think this was the case. The
clue that they are not mutators is the fact that they return String objects. In other
words, the fact that they return a String object is a clue that they construct a new
String object from the owning String object and return the new object.

As another example, the Color class has brighter() and darker() methods
that you might think, from their names, are mutators. Again, however, Color
objects are immutable, and one clue is that these methods return Color objects.

However, it is important not to over-generalize. As you’ve now seen, many
mutator methods in the StringBuilder class return StringBuilder objects. In
this case, it is to support invocation chaining. The only way to know is to read the
documentation.

So, it is very important to carefully document methods in immutable classes
that might appear to be mutators and mutators in mutable classes that support
invocation chaining. It is easy to make inappropriate assumptions about the way
an object will behave, based only on method signatures. The only way to prevent
the problems that arise from such assumptions is to document the code.

CHAPTER 26
Outbound Parameters

Though it is not always discussed in introductory programming courses,
parameters can be used to pass information to a method (i.e., inbound pa-

rameters), to pass information from a method (i.e., outbound parameters), or to
do both (i.e., in-out parameters). While some programming languages make this
explicit, Java does not.

26.1 Motivation

In Java, a method can only return a single value or reference, and this is sometimes
inconvenient. Suppose, for example, you want to write a method that is passed a
double[] and returns both the maximum value and the minimum value. One way
to achieve the desired result is to construct and return a double[] that contains
two elements, the maximum and the minimum. Another way to achieve the desired
result is to create a class called Range that contains two attributes, the minimum
and maximum, and construct and return an instance of it. This chapter considers
a third approach — outbound parameters.

26.2 Review

In order to understand the use of outbound parameters in Java, it is critical to
understand parameter passing. In particular, it is critical to understand that Java
passes all parameters by value. This means that the formal parameter (sometimes
called the parameter) is, in fact, a copy of the actual parameter (sometimes called
the argument). This is important because it means that, though a method can
change the formal parameter, it can’t change the actual parameter.

163

164 CHAPTER 26. OUTBOUND PARAMETERS

26.3 Thinking About The Problem
At first glance, this might make you think that it is impossible to have outbound
parameters in Java. However, when a parameter is a reference type, even though
the formal parameter is a copy of the actual parameter, the formal and actual
parameters refer to the same object. That is, they are aliases. Hence, if the object
is mutable, a method can change the attributes of that object.

With this in mind, there are three different situations to consider, corresponding
to the need to pass each of the following:

• A mutable reference type;

• A value type; or

• An immutable reference type.

Each situation must be handled slightly differently.
The first situation is the easiest to handle. In this case, the method simply

changes the attributes of the outbound formal parameter (which is an alias for the
actual parameter).

The second situation is slightly more complicated. In this case, changing the
formal parameter has no impact on the actual parameter. What you’d like to do is,
somehow “convert” the value type to a reference type. While this isn’t possible, you
can, instead, create a wrapper class, that serves the same purpose. For example, if
you want to have an outbound int parameter then you write an IntWrapper class
like the following:

public class IntWrapper {
private int wrapped;

public IntWrapper() {
set(0);

}

public IntWrapper(int i) {
set(i);

}

public int get() {
return wrapped;

}

public void set(int i) {
wrapped = i;

}
}

26.4. THE PATTERN 165

The third situation is more like the second than the first. Since the parameter
is immutable, even though the formal parameter is an alias, there is no way to
change the attributes of the object being referred to. Hence, you must again create
a wrapper class. For example, if you want to have an outbound Color parameter
(which is immutable) then you write a ColorWrapper class like the following:

import java.awt.Color;

public class ColorWrapper {

private Color wrapped;

public ColorWrapper() {
set(null);

}

public ColorWrapper(Color c) {
set(c);

}

public Color get() {
return wrapped;

}

public void set(Color c) {
wrapped = c;

}
}

26.4 The Pattern
What all of this means is that to create a method that makes use of this pattern
you must complete several steps.

1. Write a wrapper class if necessary;

2. Declare a method with an appropriate signature;

3. (See below);

4. Perform the necessary operations in the body of the method; and

5. Modify the attributes of the outbound parameter.

To use the pattern in this form, the invoker of the method must then construct an
“empty” instance of the outbound parameter and pass it to the method. When the

166 CHAPTER 26. OUTBOUND PARAMETERS

method returns, the values of the outbound parameter will have been set, and the
invoker can then make use of it.

The solution can be improved by giving the invoker the flexibility to either use
an outbound parameter for the result or to return the result. The invoker can signal
its preference by passing either an empty/uninitialized outbound object or null. In
the latter case, the method will construct an instance of the outbound parameter,
modify it, and return it. In the former case, the method will modify the given
outbound parameter, and return it (for consistency).

This leads to the following additional steps (which you may have noticed are
missing above):

3. At the top of the method, check to see if the outbound parameter is null and,
if it is, construct an instance of the outbound parameter;

6. Return the outbound parameter.

26.5 Examples

Some examples will help to clear up any confusion you may have.

Outbound Arrays

Returning to the motivating example, if you want to simultaneously calculate the
minimum and maximum elements of a double[], you can use the pattern to create
an extremes() method like the following:

public static double[] extremes(double[] data, double[] range) {
if (range == null) range = new double[2];

range[0] = Double.POSITIVE_INFINITY;
range[1] = Double.NEGATIVE_INFINITY;

for (int i = 0; i < data.length; i++) {
if (data[i] < range[0]) range[0] = data[i];
if (data[i] > range[1]) range[1] = data[i];

}
return range;

}

You can then invoke this method in either of two ways.
On the one hand, you can construct the array to hold the outbound parameter

as follows:

26.5. EXAMPLES 167

double[] temperatures = {75.3, 81.9, 68.2, 67.9};
double[] lowhigh = new double[2];

extremes(temperatures, lowhigh);

The variable that was constructed to contain the outbound parameters can then be
used normally. In this case, lowhigh[0] will contain the minimum, and lowhigh[1]
will contain the maximum.

On the other hand, you can pass null as the outbound parameter and allow the
method to construct and return it, as follows:

double[] temperatures = {75.3, 81.9, 68.2, 67.9};
double[] lowhigh;

lowhigh = extremes(temperatures, null);

After the return, lowhigh can be used exactly as in the previous example. The
difference is that the memory for the array was allocated in the method named
extremes() rather than in the invoker.

Note that it is not necessary to pass null explicitly. One can, instead, pass a
variable that has been assigned the reference null, as in the following example:

double[] temperatures = {75.3, 81.9, 68.2, 67.9};
double[] lowhigh = null;

lowhigh = extremes(temperatures, lowhigh);

The difference is purely stylistic, though some people prefer the explicit approach
for clarity reasons.

Outbound Mutable Objects

Continuing with the same example, instead of using an array for the outbound
parameter, you can create a class of mutable objects named Range to accomplish
the same thing, as follows:

168 CHAPTER 26. OUTBOUND PARAMETERS

public class Range {

private double max, min;

public Range() {
set(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY);

}

public Range(double min, double max) {
set(min, max);

}

public double getMax() {
return max;

}

public double getMin() {
return min;

}

public void set(double min, double max) {
this.min = min;
this.max = max;

}
}

The method for finding the minimum and maximum (now named extrema()
rather than extremes() to avoid any confusion) can then be implemented as follows:

public static Range extrema(double[] data, Range range) {
if (range == null) range = new Range();
double max, min;

min = Double.POSITIVE_INFINITY;
max = Double.NEGATIVE_INFINITY;

for (int i = 0; i < data.length; i++) {
if (data[i] < min) min = data[i];
if (data[i] > max) max = data[i];

}
range.set(min, max);
return range;

}

It can then be invoked with a second parameter that is explicitly null or a Range
variable that has been assigned the value null as in the earlier example.

26.5. EXAMPLES 169

Should you want to include both versions (i.e., the one that is passed/returns
a double[] and the one that is passed/returns a Range) and want to be able to
explicitly pass null as the second parameter, then the two methods must have
different names. Otherwise, the invocation will be ambiguous (i.e., the compiler will
not be able to determine which version you want to invoke because null does not
have the type of the second parameter in either version).1

Outbound Value Types

Now suppose that you want to write a method that is passed an int[] and calculates
the number of positive elements, the number of negative elements, and the number
of zeroes. You could return an array containing these values, but this approach is
prone to error because you must remember which index corresponds to which value.
So, you decide to use outbound parameters.

However, as discussed above, you can’t use int values directly; instead you must
use a wrapper. This leads to the following implementation:

public static void summarize(int[] data,
IntWrapper positives,
IntWrapper negatives,
IntWrapper zeroes) {

int neg = 0, pos = 0, zer = 0;

for (int i = 0; i < data.length; i++) {
if (data[i] < 0) neg++;
else if (data[i] > 0) pos++;
else zer++;

}
positives.set(pos);
negatives.set(neg);
zeroes.set(zer);

}

Note that, in this example, the method doesn’t return anything. Hence, the invoker
must construct the outbound parameters.

Outbound Immutable Objects

Finally, suppose that you are obsessed with your University’s color palette (e.g.,
purple and gold), and that you want to write a method that converts any Color to
the main color in that palette (e.g., purple). Since Color objects are immutable,
you must wrap the parameter as discussed above. You can then implement the
purpleOut() method as follows:

1You could type cast null as either a double[] or a Range to resolve the ambiguity, but that’s
inconvenient.

170 CHAPTER 26. OUTBOUND PARAMETERS

public static ColorWrapper purpleOut(ColorWrapper wrapper) {
if (wrapper == null) wrapper = new ColorWrapper();

wrapper.set(new Color(69, 0, 132));
return wrapper;

}

It can then be invoked as follows:

ColorWrapper color = new ColorWrapper(Color.RED);

purpleOut(color);

26.6 A Warning
You might be wondering why you had to write an IntWrapper class when the Java
API includes the Integer, Double, Boolean, etc. classes. While those classes are
also wrappers, they were designed for a different purpose. Specifically, they were
created so that wrapped value types could be added to collections (which hold
references). As it turns out, the objects in those classes are immutable and, hence,
can not be used for the purposes of this chapter.

CHAPTER 27
Missing Values

When working with numeric data one often needs to deal with missing val-
ues. Failing to take this requirement into account early in the development

process can cause enormous problems later on.

27.1 Motivation

Suppose you’re writing a program that helps households manage their monthly
budgets (in dollars and cents). Users of such a program have to enter their various
expenditures every week. Unfortunately, people sometimes forget to do so. For
example, someone might forget to enter their grocery expenditures for a particular
week. When calculating their average expenditure on groceries, this missing value
shouldn’t be treated as a 0.00, because that would skew the result. However it must
be accounted for somehow.

To deal with problems of this kind you must think about two things. First, you
have to think about how to represent missing values. Second, you have to think
about how to incorporate them into calculations of various kinds.

27.2 Review

If you were given the task of writing such a budget program, you would almost
certainly use a double to represent expenditures. Then, since expenditures must
be non-negative, you would use a sentinel value like -1.00 to indicate that the
expenditure is actually missing.

There are two shortcomings of this approach for general situations. The first,
and most important, is that in many situations there is no double value that can

171

172 CHAPTER 27. MISSING VALUES

be used reliably as a sentinel because every possible double value is valid.1 The
second is that it is error prone. Specifically, if at some point a programmer forgets
to check to see if a value is a sentinel it will be used as if it is valid, resulting in
incorrect results (and a defect that is very difficult to localize and correct).

27.3 Thinking About The Problem
Ideally, every data type would have an associated sentinel. Unfortunately, this isn’t
the case. Fortunately, however, all reference types do have an associated sentinel,
the reference null.

This means that you have a natural way to indicate that something is missing
for everything that is represented using a reference type. For example, if you don’t
have the name of the grocery store where a purchase was made, you can indicate
that by assigning null to the relevant variable.

27.4 The Pattern
This observation leads to a solution to the general problem. Specifically, as in Chap-
ter 26 on outbound parameters, you can use wrapper objects to hold the numeric
values. When a particular data point is missing the wrapper object will be null,
otherwise the wrapper object will hold the value. Since there is no reason for the
wrapper objects to be mutable, unlike Chapter 26, you can use the built-in Double
and/or Integer classes. Then, before performing any operation on the wrapped
data, you just check to see if the wrapper is null, extract the value if it isn’t, and
take the appropriate actions in either case.

This pattern can be summarized as follows. When collecting the data, you must:

1. Declare a wrapper object to be a Double or Integer as appropriate.

2. If the information isn’t missing, use the static Double.valueOf() or
Integer.valueOf() method to construct the wrapper object.2

Then, when processing the data, you must:

3. Determine if the wrapper object is null.

4a. If it is, take the appropriate actions for a missing value.
1This is one of the reasons the Double.parseDouble() method that converts String represen-

tations of numbers to double values throws a NumberFormatException when the parameter does
not represent a number. There is no sentinel value that it could return to indicate that there was
a problem.

2Note that the constructors in the built-in wrapper classes have been deprecated, meaning that
they shouldn’t be used because they may be removed from the language in the future.

27.5. EXAMPLES 173

4b. If it isn’t, use the wrapper object’s doubleValue() or intValue() to retrieve
the value and take the appropriate actions for a non-missing value.

27.5 Examples

As an example, consider situations in which you need to calculate the mean of an
array of data points (using one or more accumulators as in Chapter 13). Each data
point is represented as a Double object, as is the result of the calculation (i.e., the
mean), so that it can be used in subsequent calculations (e.g., in the calculation of
the variance). The situations vary in the way missing values are handled.

Using a Default Value

The first kind of situation is one in which a default value is used in place of any
missing elements. This would be appropriate, for example, when calculating the
mean exam grade in a course in which all of the exams are required and, hence, the
defaultValue is 0.0, as in the following:

total = 0.0;
for (int i = 0; i < data.length; i++) {

if (data[i] == null) {
total += defaultValue; // Initialized elsewhere

} else {
total += data[i].doubleValue();

}
}
average = total / (double) data.length;

All that is needed in this case is to increase the accumulator named total by the
defaultValue when the element is missing or by the actual value when it isn’t.

Ignoring Missing Values

The next kind of situation is one in which missing values are ignored (i.e., each
missing value is skipped). This approach might be used, for example, to calculate
someone’s average weekly grocery bill when they might forget to enter the value for
a particular week, as in the following:

174 CHAPTER 27. MISSING VALUES

total = 0.0;
n = 0;
for (int i = 0; i < data.length; i++) {

if (data[i] != null) {
total += data[i].doubleValue();
n++;

}
}
average = total / (double) n;

In this case it is critical to ensure that the number of non-missing values is used
when calculating the mean. A second accumulator, n, is used for this purpose.

Propagating the Missing Value

The final kind of situation is one in which missing values are propagated. In other
words, any calculation involving a missing value results in a missing value. This
might be appropriate, for example, when calculating the average state population
in the United States. If the population for a particular state is missing, it can
neither be ignored nor replaced with a default value. So, the average itself must be
missing, as in the following:

missing = false;
total = 0.0;
for (int i = 0; i < data.length; i++) {

if (data[i] == null) {
missing = true;
break; // No reason to continue iterating

} else {
total += data[i].doubleValue();

}
}

if (missing) {
result = null;

} else {
result = Double.valueOf(total / (double) data.length);

}

In this case, after the loop terminates, you need to know if there were any missing
values. Again, a second accumulator (named missing) is used for this purpose.
Note that, as soon as a missing value is encountered, the loop can be terminated.

27.6. A WARNING 175

27.6 A Warning
As a convenience, the Java compiler boxes and unboxes its wrapper objects. This
means that, given the following declarations:

double value;
Double wrapper;

a statement like the following:

wrapper = value;

is actually converted into the following:

wrapper = Double.valueOf(value);

and then compiled.
Similarly, a statement like the following:

value = wrapper;

is actually converted into the following:

value = wrapper.doubleValue();

and then compiled.
It is very easy for beginning programmers to forget that this happens, and make

mistakes as a result. It is also very easy to think that the compiler will box/unbox
things that it will not. So, for example, you cannot assign a double[] to a Double[]
or vice versa. So, when first starting out, you should not rely on this “convenience”.

27.7 Looking Ahead
When you learn about collections you will learn about parameterized classes (i.e.,
type-safe, generic classes). Though they are almost always taught originally in the
context of collection, parameterized classes actually have many other uses.

One example is the Optional class in the java.util package. It is a wrapper
class that has methods like isEmpty() and isPresent() that can be used to de-
termine if a value is missing or supplied. In addition, it has methods like orElse()
that return the actual contents for non-missing data and a default for missing data.

CHAPTER 28
Checklists

In many aspects of life, both personal and professional, it is necessary to de-
termine if a set of criteria have been satisfied (e.g., goals have been accomplished,

courses have been taken). One common way to do this is to use a checklist.

28.1 Motivation

Suppose you’re getting ready to go on vacation; you probably have a number of
things that you want to remember to pack (e.g., shirts, socks, pants, and skirts).
So, you decide to write a program to help you ensure that you don’t forget anything.
However, unlike the situations considered in Chapter 10 on bit flags, the program
will be provided with the checklist dynamically at run-time (i.e., it isn’t known when
the program is written and compiled).

28.2 Review

To increase the flexibility of the program, you decide to represent the criteria that
need to be satisfied as a String[] named checklist, and you populate that array
before you start working on the tasks. Then, as you accomplish a task, you enter
it into another String[] named accomplished. Each time you accomplish a task
you want to be able to determine whether or not you are done (e.g., whether you
have completed all of the tasks in the checklist).

Of course, it’s easy to compare a single element of checklist with a single
element of accomplished using the equals()method in the String class. However,
in and of itself, that doesn’t solve the problem of determining whether or not you
are done. Clearly, the equals method must be invoked iteratively.

177

178 CHAPTER 28. CHECKLISTS

28.3 Thinking About The Problem

You can determine whether any given element of checklist has been accomplished
by comparing it with each element in accomplished. For example, you can deter-
mine whether element index of checklist has been accomplished as follows:

boolean done = false;
for (int a = 0; a < accomplished.length; a++) {

if (accomplished[a].equals(checklist[index])) {
done = true;
break;

}
}

At the end of this loop, done will contain true if and only if checklist[index]
has been accomplished.1

This loop can be used to determine whether a single criterion has been satisfied.
To determine if all of the criteria have been satisfied this loop needs to be nested
inside of another loop. Unfortunately, there are many ways to do this incorrectly.

For example, the following implementation returns false at the first discrepancy
between the two arrays, which may just be a result of a difference in how the two
are ordered:

for all elements in accomplished {
for all elements in checklist {

if the accomplished element does not equal the checklist element {
return false

}
}

}
return true

As another example, the following implementation returns true as soon as it
determines that one item on the checklist has been accomplished:

1Note that the body of the if statement contains a break statement. While not necessary
(i.e., the fragment would be correct without it), there is no reason to continue iterating after it has
been determined that checklist[index] has been accomplished. Note also that the body of the
loop does not contain an else clause that assigns false to done. Since done is initialized to false
outside of the loop, there is no reason to assign a value to done at each iteration. Finally, you
should be able to convince yourself that, if the break statement was omitted and the else clause
was included, the fragment would not be correct (i.e., when the loop terminates done would always
contain the value accomplished[accomplished.length-1].equals(checklist[index])).

28.4. THE PATTERN 179

for all elements in accomplished {
assign false to the accumulator named checked

for all elements in checklist {
if the accomplished element equals the checklist element {

assign true to the accumulator named checked
break

}
}

if checked is true then return true
}
return false

In short, there are many incorrect ways to think about the problem. To get
the right answer, you must think carefully about the way the loops are nested, the
Boolean expression in the if statement, the way in which break statements are
used, and where return statements are located.

28.4 The Pattern

For this problem, there are two variants of the pattern. In the first variant, you
only want the method to return true when all of the items on the checklist have
been accomplished. You can solve this variant with a single boolean accumulator
as follows:

private static boolean checkFor(String[] checklist, String[] accomplished) {
boolean checked;
for (int c = 0; c < checklist.length; c++) {

checked = false;

for (int a = 0; a < accomplished.length; a++) {
if (checklist[c].equals(accomplished[a])) {

checked = true;
break;

}
}
if (!checked) return false; // An item was not accomplished

}
return true; // All items were accomplished

}

Note that this algorithm breaks out of the inner loop as soon as it determines that
the checklist item of interest has been accomplished. It returns false as soon as it
determines that any checklist item was not satisfied. Hence, if both loops terminate

180 CHAPTER 28. CHECKLISTS

normally then all of the items on the checklist must have been accomplished and
the method returns true.

In the second variant of the pattern, you want the method to return true when
more than needed elements of the checklist have been accomplished. For this vari-
ant, you can use an int accumulator named count that keeps track of the number
of items on the checklist that have been accomplished, as follows:

private static boolean checkFor(String[] checklist, String[] accomplished,
int needed) {

int count;
count = 0;
for (int c = 0; c < checklist.length; c++) {

for (int a = 0; a < accomplished.length; a++) {
if (checklist[c].equals(accomplished[a])) {

count++;

if (count >= needed) return true;
else break;

}
}

}
return false; // Not enough items were accomplished

}

Again, this algorithm can break out of the inner loop when it determines that
the checklist item of interest has been accomplished. In addition, it can return
early when count reaches needed. However, in this case, an early return means
the checklist has been satisfactorily accomplished. Hence, if both loops terminate
normally then the method returns false.

Note that both implementations could be improved by checking to ensure that
accomplished.length is at least as large is necessary to satisfy the checklist (i.e.,
at least as large as checklist.length in the first variant and at least as large
as needed in the second variant). This improvement was omitted for the sake of
simplicity.

28.5 Examples
It is useful at this point to consider some examples involving both variants above.
In all of these examples, checklist contains the elements "Shirts", "Socks",
"Pants", and "Skirts".

The Inflexible Variant

First, suppose that accomplished contains the elements "Shirts", "Socks",
"Pants", "Dresses", and "Shoes". In outer iteration 0, the method checks to

28.5. EXAMPLES 181

see if "Shirts" has been accomplished. In inner iteration 0, the method determines
that it has been and breaks out of the inner loop. In outer iteration 1, the method
checks to see if "Socks" has been accomplished. In inner iteration 0, the method
determines that it hasn’t been, but in inner iteration 1 it determines that it has
been and breaks out of the inner loop. The iterations then continue as follows:

c checklist[c] a accomplished[a]

0 Shirts 0 Shirts

1 Socks 0 Shirts
1 Socks

2 Pants 0 Shirts
1 Socks
2 Pants

3 Skirts 0 Shirts
1 Socks
2 Pants
3 Dresses
4 Shoes

Since checklist[3] is not an element of accomplished, the local variable checked
is never assigned the value true, and the method returns false.

Now, suppose that accomplished contains the elements "Socks", "Shirts",
"Skirts", and "Pants". In outer iteration 0, the method checks to see if "Shirts"
has been accomplished. In inner iteration 0, the method determines that it hasn’t
been, but in inner iteration 1 it determines that it has and breaks out of the inner
loop. In outer iteration 1, the method checks to see if "Socks" has been accom-
plished. In inner iteration 0, the method sees that it has been and breaks out of the
inner loop. The iterations then continue as follows:

182 CHAPTER 28. CHECKLISTS

c checklist[c] a accomplished[a]

0 Shirts 0 Socks
1 Shirts

1 Socks 0 Socks

2 Pants 0 Socks
1 Shirts
2 Skirts
3 Pants

3 Skirts 0 Socks
1 Shirts
2 Skirts

In this case, checked is assigned the value true in every outer iteration, and the
method returns true.

The Flexible Variant

Now consider the first example above but with the second variant of the method,
when 2 is passed into the formal parameter named needed (because, apparently,
this person is fully-dressed when wearing any two items in the checklist). In outer
iteration 0, the method checks to see if "Shirts" has been accomplished. In inner
iteration 0, the method determines that it has been, increases count to 1, and
breaks out of the inner loop. In outer iteration 1, the method checks to see if
"Socks" has been accomplished. In inner iteration 0, the method determines that
it hasn’t been, but in inner iteration 1 it determines that it has been, increases
count to 2, determines that count is greater than or equal to needed, and returns
true.

Now, consider an example in which accomplished contains the elements
"Dresses" and "Shirts". These iterations will proceed as follows:

28.6. LOOKING AHEAD 183

c checklist[c] a accomplished[a]

0 Shirts 0 Dresses
1 Shirts

1 Socks 0 Dresses
1 Shirts

2 Pants 0 Dresses
1 Shirts

3 Skirts 0 Dresses
1 Shirts

In inner iteration 1 of outer iteration 0 the method determines that "Shirts" have
been packed, and increases count to 1. However, none of the inner iterations for
outer iteration 1 correspond to "Socks", none of the inner iterations for outer itera-
tion 2 correspond to "Pants", and none of the inner iterations for outer iteration 3
correspond to "Skirts". So, count is never increased to 2, and the method returns
false.

28.6 Looking Ahead
Though some thought was given to the efficiency of the algorithms above, many
issues were ignored, and none were considered formally. If you take a course on
data structures and algorithms, you will consider these kinds of issues in detail.
For example, it is interesting to ask whether it is better to sort checklist and/or
accomplished, either partially or completely. It is also interesting to ask whether
it is possible to create a more efficient algorithm when the checklist consists of
sequential integers.

Index

∆, 35
δ, 35
π, 147
Deus ex machina, 150
null, 166, 167, 169, 172
this, 159
1D, 133
2D, 134

abbreviation, 101
abstraction, v
account number, 17, 65
accumulator, 77, 78, 81, 85–88, 117,

123, 131, 140, 145, 173, 174,
179, 180

array, 85, 87, 88
Boolean, 79
multiple, 80, 85
numeric, 79

accumulator array pattern, see pat-
tern

accumulator pattern, see pattern
accuracy, 27, 29

digits, 49
numerical, 51

addition operator, see operator
algorithm, iii, 11, 42, 60, 87, 88, 94, 97,

105, 108, 110, 132, 136, 179,
180, 183

alias, 164, 165
ambiguous, 169

amplitude, 122
animal shelter, 149
anthropomorphization, 65
anti-pattern, 117
append, 140, 141, 144, 157
application programming, see pro-

gramming
architectural style, see style
architecture, 45

computer, 45
hardware, 45

argmax, 81
argument, 81, 163
arguments

command-line, 110
arithmetic, 21

circle, 24, 54
arithmetic on the circle pattern, see

pattern
arithmetic operator, see operator
array, viii, 57, 77–81, 86–90, 92, 96,

98, 101, 102, 104, 107, 108,
117, 121, 123, 139, 140, 166,
167, 169, 173, 177, 178

0-length, 82
accumulator, 87, 88
concatenate, 108
conformal, 102, 103, 118
interleave, 109
of arrays, viii, 120, 121
packed, 20, 107

185

186 INDEX

rectangular, 120
segmented, 20, 107, 109, 110

array of arrays, see array
ASCII, 6
assignment, vii, 12
assignment operator, see operator
atomic, 17
attribute, 79, 117–119
average, 36, 37, 171, 173, 174

neighborhood, 123, 125
weighted, 121, 122

baby, 35
balance, 13, 14
bank, 13–15, 17, 19
base, 17, 20, 65–67, 93

2, 58
10, 58
convert, 67

base rate, 37
batch, 27
binary, 57, 58
binary operator, see operator
binary representation, see representa-

tion
birth weight, see weight
bit, 58–62, 111, 177
bit flags pattern, see pattern
bit shift operator, see operator
block, 74
Blooms’ taxonomy, iii
blur, 121, 123
BMR, 44
Boolean, 79, 179
Boolean variable, see variable
bound, 66, 104, 118, 123
boundary, 96, 97, 123
bounded, 23
box, 175
bracket

square, 147
budget, 171

cardinality, 24, 26
case

special, 82
categorical, 101
census, 93
center, 121, 122, 131, 132

conceptual, 136
centering pattern, see pattern
centile, 85, 86
century, 51
chained, 157–160
chained mutator pattern, see pattern
character, 5, 6, 8, 15, 37, 131, 132, 136

middle, 132
starting, 132

checklist, 177–180, 183
checklist pattern, see pattern
circle, 22
civilian, 101
class

wrapper, 164
clip, 137
clock, 22, 24
clockwise, 22
code, iii
code duplication, see duplication
coding, iii
cognitive domain, iv
collection, 170, 175
color, 26, 111, 121, 122, 165, 169
color palette, 169
column, 77, 102, 122, 123, 131, 135
column-major, 102
comma

Oxford, 144
comma separated values, 144
complete, 53
component, 111
composite, 58
compound assignment operator, see

operator
computer, iii, 11, 58

INDEX 187

concatenate, 83, 108, 140, 146, 157
conceptual, 102, 122
conceptualization, 109, 139–141
condition, viii, 35, 97
conditional operator, see operator
conformal array pattern, see pattern
console, 131
constant, 35, 36
constrained, 25
constraint, 104
construct, 146, 147, 150, 157, 161, 163,

165–167, 169, 172
constructor, 172
container, 6, 131, 132, 135–137
content, 131, 132, 135–137
contiguous, 92, 118
continuous variable, see variable
control sequence, 131
converse, 36, 37
coordinate, 133

Euclidean, 135
horizontal, 135
screen, 135
vertical, 135

correct, 172
correspondence, 57
counterclockwise, 22
course, 13, 20, 55, 63, 94, 105, 111,

145, 163, 173, 177, 183
CPI, 101, 104, 105
CPU, 45
credit card, 17, 19, 65, 66
criterion, 103, 177, 178
cycle, 26

data, 35, 62, 92, 95, 101, 102, 107, 118,
122, 144, 171–173, 175

data structures, 63, 94, 105, 183
day, 21, 24, 25, 37
debit, 17
decade, 28, 51
decimal point, 147

decimal representation, see represen-
tation

declaration, vii, 11, 86, 88, 175
declare, 11
decrement, 11
decrement operator, see operator
default, vi, 80, 126, 173–175
defect, 74, 172

off by one, 98, 119
definite, 77, 97, 118
delimited string pattern, see pattern
delimiter, 139–141, 143, 144

last, 143
normal, 143
space, 144
tab, 144

denominator, 45, 46, 54, 55
dependent variable, see variable
deploy, 74
deprecated, 172
design, iv
design pattern, see pattern
determinate, 77, 97, 118
digit, 17, 27, 29, 65, 78, 86, 146, 147

single, 77
digit counting pattern, see pattern
digit manipulation pattern, see pat-

tern
digital, 58
dimension, 132, 135
dimensionality, 122
direction, 136, 159
discount, 14
discrete variable, see variable
discretized, 121, 122
disjoint, 96
divisible, 26
division, 53

integer, 54, 55, 123, 132, 136
real, 46

domain, 122
dummy variable, see variable

188 INDEX

duplication, vii, 9
code, 42, 125, 149

dynamic formatting pattern, see pat-
tern

economic, 103
economy, 101
efficiency, 105, 157, 183
element, 46, 55, 77, 79–81, 88–90, 101,

105, 107, 117, 121–123, 139–
141, 145, 163, 166, 169, 173,
177, 178, 180–182

elevation, 13
email address, 157
employee, 27, 28, 49, 51
empty set, 96
encapsulate, 87, 158, 159
engineering, v

software, v
entertainment, 42, 43
entity, 86
error prone, 149
Euclidean, 135
even, 26, 88, 136
evenly divisible, 26, 28, 50, 54
exam, 89, 173
exception, viii, 82, 126
execute, 11, 45, 74, 110
exit

highway, 89, 91
expenditure, 171
expression, 12, 28, 35, 36, 87, 94

arithmetic, 45
Boolean, 45, 57, 82, 179

extent, 132
extract, 172

field, 103, 109
finite, iii
flag, 57, 146

bit, 177
clear, 58

set, 58
toggle, 58

flexible, 120, 166
format, 29, 144
format specifier, 145–147

game, 5, 26, 53, 55, 57, 60
gap, 104
garbage, 8
generic, 150, 175
gestation, 35
gold, 5, 25
grade, 13, 89, 98, 105, 173

GPA, 98
letter, 92, 95, 98
numeric, 85, 92, 95, 98
pass/fail, 93

grid, 122
groceries, 171
GUI, 134, 139

hardware, 51
hashing, 94
header, 102
height, 44, 107, 110, 133, 135
heuristic, iii
hexadecimal, 20
highway, 13, 89, 90
homogeneous, 89, 96, 101, 102
hour, 21, 22, 24

identifier, 37
course, 105

idiom, v
image, 121, 124, 133, 134
immutable, 161, 164, 165, 169
inbound, 163
income, 67, 95, 96, 98
increment, 11
increment operator, see operator
indefinite, 74
independent, 77
independent variable, see variable

INDEX 189

index, 81, 86–90, 92–95, 97, 101, 102,
108, 132, 169

indicator
non-zero, 47
threshold, 41–43, 47, 51, 52, 55

indicator methods, see pattern
indicator pattern, see pattern
indicator variable, see variable
inequality, 123

strong, 119, 123, 144
weak, 123, 144

infinity, 56
initialize, vi, 37, 43, 58, 67, 78, 81, 85–

88, 119, 139, 140, 178
inning, 55
input, viii, 73, 133, 134
instance, 165
integer

packed, 111
integer division operator, see operator
interleave, 109
intersection, 96
interval, 25, 46, 66, 92, 95–99, 104, 126

closed, 98, 126
half open, 126
open, 98

interval membership pattern, see pat-
tern

invalid, 74
inventory, 27, 57, 60
invert, 65, 112
invocation

chained, 160
irregular, 95
iterate, 80, 117, 118, 124, 139, 147,

177, 178
iteration, 77–79, 81, 85, 87, 97, 118,

181
inner, 183
outer, 183

key, 90, 92–94

multiple parts, 93
non-numeric, 105

kilocalories, 44

language, iii, 172
natural, 150
pattern, iv
programming, iii, 20, 163

lean, 136
library, v

Java, 120
line, 21
literal, 149
local variable, 181
localize, 172
logarithm, 65
logical operator, see operator
lookup array pattern, see pattern

mask, 58, 112
composite, 58, 60, 61

masks
unique, 59

mass, 44
max, 81
measurement, 107, 121, 122
medical, 107
members, viii
membership, 98
memory, 5–8, 11, 12, 167
message

alternate, 75
normal, 75

metabolic rate, 44
method, viii
midpoint, 132, 136
military time, see time
missing, 171–175
missing values pattern, see pattern
model, 35
money stock, 101
morning, 24

190 INDEX

mutable, 161, 164, 167, 170, 172
mutator, 158, 159, 161

natural language processing, 150
neighborhood, 121
neighborhood pattern, see pattern
nested, 86, 88, 178, 179
newspaper, 67
NLP, 150
non-contiguous, 92
non-missing, 174
non-repeating, 147
noun

irregular, 151
regular, 151

number
circle, 21–23
index, 57, 103
line, 21–23

numerator, 46, 54, 55
numeric, 25, 85, 98, 171, 172
numeric variable, see variable

odd, 26, 88, 121, 136
odometer, 62
off by one, 98, 119
one dimensional, 133
operand, 5, 7, 11, 13, 36
operation, 165, 172
operator
|, 58, 60, 61, 111
&, 58, 61, 62
ˆ, 58
addition, 12
arithmetic, vii, 11, 15, 45, 51
assignment, 5, 7, 12, 13, 15
binary, 13
bit shift, 20
bitwise, 58, 60, 61, 111
compound assignment, 15, 60
concatenation, 83
decrement, 11

increment, 11
integer division, 18, 19, 28, 45, 55,

56, 93
logical, viii
multiplication, 36
relational, viii, 45, 58
remainder, 18, 19, 45, 50
ternary conditional, 39
unary, 15

ounce, 25
outbound, 163, 166
output, viii, 29, 51, 111, 149
overload, 119
Oxford comma, 144

packed integer, 111
palette

color, 169
pants, 180
parameter, 123, 163

actual, 163
formal, 163, 182
outbound, 163–166
passing, 163

parentheses, 14
parking, 37, 39, 43
pattern

accumulator, 77, 78, 117, 123,
131, 140, 145, 173

accumulator array, 85
arithmetic on the circle, 21, 45,

54, 88, 92, 110, 136
centering, 131, 147
chained mutator, 157, 159
checklist, 177
conformal arrays, 91, 99, 101, 107,

133
delimited string, 139
design, v
digit counting, 65, 86, 146
digit manipulation, 17, 27, 65, 86,

92, 111

INDEX 191

dynamic formatting, 145
indicator, 35, 41
indicator array, 125
indicator method, 41, 54, 55
indicator methods, 42
indicators, 44
interval membership, 95, 104
lookup array, 89, 95, 98
missing value, 171
neighborhood, 121
outbound parameter, 163, 172
pluralization, 149
programming, v
rounding, 49
segmented array, 107
starts and completions, 53
subarray, 117, 121–123, 125
swapping, 5
truncation, 27, 49, 86, 92
updating, 11, 38, 44, 60, 62, 78,

85, 87
pattern language, see language
payroll, 27
penalty, 13
penultimate, 144
performance, 57
phrase, 149
pitcher, 53, 55
pixel, 121, 131
plural, 150
pluralization pattern, see pattern
poodle, 149
populate, 177
population, 35, 89, 93, 174
portion, 134
position, 18, 58, 65, 132, 135
pound, 25
precision, 147
preference, 166
pregnancy, 35, 36
prepend, 140–142
problem domain, v

problem solving, iv
program, 9, 11, 13, 14, 17, 27, 35, 53,

57, 65, 67, 73, 74, 77, 85, 145,
146, 149, 171, 177

programming, iii
application, 20
systems, 20, 111

programming language, see language
programming pattern, see pattern
promotion, 36
prompt, 73, 74
propagate, 174

quantity, 21, 22
quarter, 118

radix, 66
rain, 139
raster, 122, 124
record, 103, 107, 109, 144
rectangular, 120
reference, viii, 6, 132, 133, 135, 136,

159, 163, 164, 167, 172
reference type, 164
relational operator, see operator
remainder operator, see operator
repeat, 147
representation, 67, 90

String, 172
int, 17
8-bit, 61
base 10, 18, 65, 86
base 2, 20
binary, 5, 20, 58
decimal, 17, 65, 86
integer, 104
intervals, 96
RGB, 111
tabular, 103
two’s complement, 62

reprompt, 73, 74
reprompting pattern, see pattern

192 INDEX

requirement, 171
resources, iii
retail, 14
revenue, 92
RGB, 111
robot, 159
round, 49–52
rounding pattern, see pattern
row, 102, 122, 123
row-major, 102
run-time, 145, 147, 177
running total, 78

sales, 89, 118
scale, 85, 98
segmented array pattern, see pattern
sentence, 149
sentinel, 171, 172
sequence, 96, 121, 122
sequential, 118, 183
set

empty, 96
shift, 111
shirt, 180
signal, 166
signature, 117, 118, 123, 161, 165
singular, 150
skirt, 180
sleet, 139
snow, 139
sock, 180
software engineering, see engineering
sound, 122
space, 13, 15, 131, 147
span, 94
special case, 82
spell, 5, 62
square, 121, 123
start, 53
starts and completions pattern, see

pattern
static, 79, 90, 172

statistics, 35
storage, 77
street, 78
style

architectural, v
code, vi, 39

stylistic, 167
subarray pattern, see pattern
surcharge, 37, 43
swap, 5–9
swapping pattern, see pattern
sword, 7, 8
symbol, 15
syntax, iii, v, 12, 146
system, v, 27, 49, 57, 90
systems programming, see program-

ming

task, 177
tax, 21, 98

bracket, 95, 98
code, 95
marginal rate, 95, 98
rate, 95
table, 96

teleportation, 5
ternary conditional operator, see op-

erator
threshold, 41, 42, 46, 52

arithmetic, 52
ticket, 37, 39, 41, 43
tickets, 41
time

military, 24
time series, 101, 102
total

running, 78
truncate, 27–29, 49, 52, 68, 86
truncation pattern, see pattern
two dimensional, 134
two’s complement, 62
type cast, 29, 68, 169

INDEX 193

type promotion, 36

unambiguous, iii
unary operator, see operator
unbounded, 23
unbox, 175
underscore, 37
unemployment, 101
union, 96
unique, 59, 96
update, 11–14, 79, 86
updating, 39
updating pattern, see pattern
user, 73, 74
user interface

graphical, 134, 139
textual, 139

validate, 73, 91, 120, 126
value, 90
variable

Boolean, 36, 38
continuous, 38
control, 123
dependent, 35
discrete, 36, 38
dummy, 35
independent, 35, 36
indicator, 35, 36
local, 181
numeric, 36

verbose, 38, 40
visual, 111, 121

weapon, 5
weight, 25, 107, 110

birth, 35, 37, 38
white space, 15
width, 131–133, 135, 145–147
window, 134
wrapper, 172
wrapper class, 164

	Contents
	List of Figures
	List of Tables
	Patterns Requiring Knowledge of Types, Variables, and Arithmetic Operators
	Swapping
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning

	Updating
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning

	Digit Manipulation
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning
	Looking Ahead

	Arithmetic on the Circle
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples

	Truncation
	Motivation
	Review
	Thinking About the Problem
	The Pattern
	Examples
	Some Warnings

	Patterns Requiring Knowledge of Logical and Relational Operators, Conditions, and Methods
	Indicators
	Motivation
	Thinking About The Problem
	The Pattern
	Examples
	Some Warnings

	Indicator Methods
	Motivation
	Review
	The Pattern
	Examples
	Some Warnings
	Looking Ahead

	Rounding
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning
	Looking Ahead

	Starts and Completions
	Motivation
	Thinking About the Problem
	The Pattern
	Examples
	Looking Ahead

	Bit Flags
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	Some Warnings
	Looking Ahead

	Digit Counting
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	Looking Ahead
	A Warning

	Patterns Requiring Knowledge of Loops, Arrays and I/O
	Reprompting
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples

	Accumulators
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning
	Looking Ahead

	Accumulator Arrays
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples

	Lookup Arrays
	Motivation
	Review
	The Pattern
	Examples
	Looking Ahead

	Interval Membership
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	Some Warnings
	Looking Ahead

	Conformal Arrays
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning
	Looking Ahead

	Segmented Arrays
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	Looking Ahead

	Patterns Requiring Advanced Knowledge of Arrays and Arrays of Arrays
	Subarrays
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning

	Neighborhoods
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning

	Patterns Requiring Knowledge of String Objects
	Centering
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	Some Warnings

	Delimiting Strings
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples

	Dynamic Formatting
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples

	Pluralization
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples

	Patterns Requiring Knowledge of References
	Chained Mutators
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	An Example
	A Warning

	Outbound Parameters
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning

	Missing Values
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	A Warning
	Looking Ahead

	Checklists
	Motivation
	Review
	Thinking About The Problem
	The Pattern
	Examples
	Looking Ahead

	Index

