
Finding Alternatives to the Best Path

Kelley Scott and David Bernstein
Princeton University

ide

t

New Jersey TIDE Center
Directed by Prof. Louis J. Pignataro
New Jersey Institute of Technology
Newark, NJ
pignataro@admin.njit.edu

A great number of algorithms have been developed for finding the “best” path
through a network, where “best” can be defined in terms of time, cost, distance,
or some combination of the three [see (1) for a recent review and evaluation]. Not
surprisingly, many of these algorithms have been and are now being used in Ad-
vanced Traveler Information Systems (ATIS) and Advanced Traffic Management
Systems (ATMS) [see, for example, (2) and (3)].

While these algorithms have proven to be quite useful in ATIS and ATMS,
they are often not sufficient. In particular, there are many situations in which it
is necessary to generate alternatives to the best path. In pre-trip planning, for
example, drivers often want to be provided with one path for their outbound trip
and an alternative path for their return. As another example, users of in-vehicle
guidance systems often want to be provided with several alternative paths that they
can use to avoid particular facilities (e.g., because of an incident on that facility).
As a final example, traffic control systems often need to spread the traffic between
two points over multiple paths in order to reduce congestion.

Hence, an important task in this project has been the development of algo-
rithms for finding alternatives to the best path between a given origin and destina-
tion. In this paper we discuss a constrained shortest path problem that can be used
to generate alternative paths. We also discuss an efficient algorithm for generating
such paths and present initial computational studies.

EXISTING APPROACHES

Two approaches for finding alternative paths are commonly proposed: the first
involves link elimination, and the second involves finding ther-best paths.

In link elimination, the traveler or operator is first provided with the best path.
Then, if an alternative is needed, the traveler/operator is asked which links in
the best path should be excluded from the alternative. For example, consider the
network shown in Figure 1 where the numbers next to each link indicates the travel
time on that link. The fastest path fromO toD is shown in dark grey.

Suppose that the user wanted an alternative path that did not include the last
link in the best path. Then, this link could be “eliminated” from the network
(or temporarily given a very large travel time) and the new best path could be
found. This path is illustrated in light grey in Figure 2. The advantage of this
approach is its efficiency—the alternatives can be generated as easily as the best
path. The disadvantage is that, in many instances, the traveler/operator may not
be “unhappy” with particular links but with the path as a whole (in some difficult

1

O D

8 8 8

8
6

3

3 3

3 3

2

2
2

2
2

2
2 2

1

1

1

1

1 1
4

4
4

Figure 1: The Best Path from O to D

to define way).

O D
8

6
3

3 3

3 32
2

2
2

2
2 2

1

1

1

1 1
4

4

Figure 2: The Best Path from O to D with a Link Eliminated

The other approach that has been frequently proposed is to find the firstr-
best paths and present the traveler/operator with some or all of them. While this
method makes sense in principle, in practice it has two major flaws. First,r-best
path algorithms tend to be fairly slow. For example, finding the seventh-best path
is often considerably more difficult than finding the best path. Second, the paths
identified by such algorithms tend to be very similar. This can easily be illustrated
using the previous example. In Figure 3, the best path fromO toD is highlighted
in dark grey and the second fastest path is highlighted in light grey. These two
paths are almost identical and, as a result, travelers/operators may not view them
as true alternatives.

A NEW APPROACH

As part of this effort we have been trying to develop new methods for generating
alternative paths that have all of the advantages of the two existing approaches
but none of the disadvantages. The specific method we will discuss here is based
on the idea that when travelers/operators ask for alternative paths they want paths

2

O D

8 8 8

8
6

3

3 3

3 3

2

2
2

2
2

2
2 2

1

1

1

1

1 1
4

4
4

Figure 3: The Best and Second-Best Paths from O to D

O D

8 8 8

8
6

3

3 3

3 3

2

2
2

2
2

2
2 2

1

1

1

1

1 1
4

4
4

Figure 4: The Best Path and the Corresponding Best 1-Similar Path

that do not have “many” links in common but they do not want to identify the
links that should be different. Therefore, we have taken the traditional best path
problem and added a constraint that prevents the solution from being too similar
to the true best path.

To make this idea somewhat more formal, we say that a pathp is k-similar to
a paths if p ands have at mostk links in common. Now, ifz denotes the best
path, what we want to find is the bestk-similar path toz.

Returning to the above example, Figure 4 shows the best path in dark grey and
the corresponding best 1-similar path in light grey (i.e., the “next best” path that
has at most 1 link in common with the “best” path).

As it turns out, this problem is very easy to define mathematically. Consider a
network, G, comprised of a finite set ofnodes,N = f1; : : : ; mg, and a finite set of
(directed)links, L = f1; : : : ; ng. Thenode-arc incidence matrixfor G, which is
denoted byA, has componentsaij defined as follows:aij = 1 if link j is directed
out of nodei, aij = �1 if link j is directed into nodei, andaij = 0 otherwise.

On this network there is a single origin node,O, and a single destination node,
D. We use the vectorb to indicate the origin and destination. Specifically, we let
bO = 1, bD = �1, andbi = 0; i 2 N � fO;Dg. Thus, anyx that satisfies:

3

Ax = b

x 2 f0; 1gn
(1)

corresponds to apathfromO toD.
We assume that the (abstract)coston all links is known and given byc = (cj :

j = 1; : : : ; n). We further assume that the cost on a path corresponding tox is
given by:

C(x) = c>x: (2)

Given this, it is well-known that theminimum cost path problemcan be for-
mulated as:

minx c>x

s.t. Ax = b

x � 0
(3)

where the constraintx � 0 can replace the constraintx 2 f0; 1gn because this
problem has theintegrality property(i.e., becauseA is totally unimodular).

Now, supposez is a solution to (3). Then, given another pathx, it is easy to
see that

z>x =
nX

i=1

zixi (4)

is the number of links thatz andx have in common. Hence, the problem of finding
a minimum cost path that isk-similar toz is given by:

minx c>x

s.t. Ax = b

z>x � k

x 2 f0; 1gn

(5)

That is, the solution to this problem will be a minimum cost path that has at most
k links in common with pathz.

FINDING THE BEST K-SIMILAR PATH

Unlike the traditional minimum cost path problem given in (3), problem (5) must
explicitly include the constraintsx 2 f0; 1gn since it no longer has the integrality

4

property. (If we were only to impose the constraintx � 0 we could get non-
integral solutions, which are meaningless in the context ofx representing a path.)
The introduction of the link overlap constraint thus makes finding the best path
much more difficult [i.e., shortest path problems with a single constraint are NP-
hard (4)].

We can, however, “solve” this problem using Lagrangian Relaxation [see (5),
(6) and (7), along with (4)]. First, we bring the overlap constraint into the objective
function with a scalar multiplier,�, as follows:

minx c>x+ �(z>x� k)
s.t. Ax = b

x � 0
(6)

This additional term in the objective function serves to penalize violations of the
constraint. Observe that, for any particular�, the solution to (6) serves as a lower
bound to (5). Since we would like to find the greatest possible lower bound (i.e.,
the solution itself), the problem we wish to solve is:

max� minx c>x+ �(z>x� k)
s.t. Ax = b

x � 0
(7)

The solution to this maximization problem is not guaranteed to be the optimal
solution of the original problem but, as a heuristic, the relaxation technique can
work quite well. The problem given in (7) is concave in�, hence it is relatively
easy to solve. The only potential difficulty is that the objective function is not
differentiable in�. Fortunately, in this case� is a scalar, and we can use any one-
dimensional search algorithm that does not require derivatives (e.g., Dichotomous
Search, Fibonacci Search, Golden Section Method).

Whichever search algorithm is used, problem (6) must be solved for each “test
value” of �. One could, of course, solve it using any linear programming solver
since relaxing the overlap constraint restores the integrality property. However,
this problem can more easily be solved using a best path algorithm. Specifically,
letting ~c = c + �z, one need only solve a minimum cost path problem using~c
rather thanc. In this modified best path problem, the links comprising the best
path are penalized by�—as� increases, the number of links in common with the
best path decreases. Depending on the algorithm used, it may even be possible to
“warm start” using information obtained when solving forz.

In addition, we must specify an initial search interval for�. Observe that,

5

for some�0 > 0 and two distinct pathsx1 and x2, ~c>x1 = (c + �0z)>x1 =
(c+ �0z)>x2 = ~c>x2. Alternatively,

�0 =
c>x2 � c>x1

z>x1 � z>x2

We can therefore obtain an upper bound for�0 by computing the difference in
costs on the best path and on a path having no links in common with the best path,
then dividing by the smallest difference in the number of links shared with the
best path (i.e., 1). We find the disjoint path by temporarily setting the cost on the
links in the best path to “infinity” and solving once again for the shortest path. The
length of the uncertainty interval used to terminate the search was set at 0.0001 in
all cases.

NUMERICAL RESULTS

To provide evidence of the efficiency of this approach, we implemented the heuris-
tic in C and examined its performance on several test cases. For these computa-
tional studies, we used the Golden Section Method for the one-dimensional opti-
mization, and used a binary-heap implementation of Dijkstra’s algorithm [(8), (9),
(10)] to solve the shortest path subproblem.

The test network, shown in Figure 5, is the New Jersey highway system; it
is comprised of 321 nodes and 1124 arcs. The cost associated with each arc is
simply the travel time (measured in hours). Table 1 lists the categories of roads
and the travel speed assumed for each type.

Number Speed (mph)
Ordinary road 666 30
Divided highway 190 40
Freeway 158 50
Toll road 104 50
Toll bridge or tunnel 6 25

Table 1: New Jersey Road Types

Fourteen representative “trips” on the network with varying origins, destina-
tions, and number of links in the minimum time path were selected for study. They
are summarized in Table 2.

6

Delaware
Memorial
 Bridge

Highlands

Morristown
New York
 City

Trenton

Atlantic
 City

Camden

Paramus

Vernon

Ringoes

Newark

Princeton

Gum Tree
 Corner

Ordinary road
Divided highway
Freeway
Toll road
Toll bridge/tunnel

KEY:

Cape May

 Long
Branch

Pt. Pleasant

Tewksbury

Figure 5: Test Network

7

Best Cost Links in
Pair Origin Destination (hrs) Best Path
1 Paramus Atlantic City 3.610 25
2 Princeton Cape May 3.836 24
3 Tewksbury Atlantic City 3.783 21
4 Camden New York City 2.394 16
5 Delaware Memorial Bridge New York City 3.029 14
6 Princeton Vernon 2.408 14
7 Trenton Highlands 1.967 13
8 Princeton New York City 1.442 12
9 Newark Pt. Pleasant 1.668 11
10 Newark Ringoes 1.679 10
11 Gum Tree Corner Camden 1.773 9
12 Newark Long Branch 1.560 9
13 Gum Tree Corner Atlantic City 2.464 8
14 Princeton Morristown 1.204 7

Table 2: Examples

We imposed the same set of four overlap constraints on each trip and solved
the corresponding constrained shortest path problems using both our relaxation
method and an implementation of Yen’s algorithm for ther-shortest path problem
(11). For each origin-destination (OD) pair and limit on shared links, Tables 3
and 4 list the cost on the best path and the results of the heuristic and of ther-best
algorithm. We halted the latter method after 2000 shortest path calls had been
made.

The relaxation method appears to be very efficient, requiring only a handful
of shortest path calls and, using a Silicon Graphics Indy workstation with a MIPS
R4600 CPU running at 100 MHz and 32 Mb of memory, less than 0.2 seconds of
CPU time to solve every problem. In several of the 56 trials, the heuristic does fail
to provide the true minimum cost path that meets the overlap constraint; the path
costs in these instances are italicized. However, in all of these cases, the duality
gap was always less than 10 percent of the cost on the minimum time path.

Note that the number of shortest path calls isindependent of the overlap con-
straintand, to a large degree, of the length of the best path; instead, the difference
in costs on the best and disjoint paths relative to the minimum cost is the primary
factor influencing the efficiency. For example, for OD pair 14, the number of

8

Best Relaxation Heuristic r-Best Algorithm
OD k-Similar Cost on Shared No. of Cost on No. of
Pair k Path Cost Solution Links SP Calls Solution r SP Calls
1 6 3.953 3.953 4 25 - - >2000

3-1 4.212 4.212 0 ˝ - - ˝

2 6 3.912 3.912 6 24 3.912 9 171
3 4.027 4.027 3 ˝ 4.027 61 1359
2 4.126 4.208 1 ˝ - - >2000
1 4.208 4.208 1 ˝ - - ˝

3 6-2 3.817 3.817 2 20 3.817 3 42
1 3.843 3.843 0 ˝ 3.843 5 85

4 6 2.557 2.557 6 24 2.557 41 708
3 2.722 2.764 2 ˝ - - >2000
2 2.722 2.722 2 ˝ - - ˝
1 2.819 2.819 1 ˝ - - ˝

5 6 3.251 3.358 3 26 3.251 71 1300
3 3.358 3.413 2 ˝ - - >2000
2 3.413 3.413 2 ˝ - - ˝
1 3.839 3.839 1 ˝ - - ˝

6 6 2.612 2.620 4 25 2.612 30 426
3 2.716 2.716 2 ˝ 2.716 107 1565
2 2.716 2.716 2 ˝ 2.716 107 1565
1 2.861 2.861 1 ˝ - - >2000

7 6-1 1.990 1.990 0 18 1.990 2 14

8 6 1.639 1.643 6 21 1.639 20 237
3 1.747 1.791 3 ˝ 1.747 84 1100
2 1.791 1.791 2 ˝ 1.791 144 693
1 1.846 1.846 1 ˝ 1.846 - >2000

9 6-3 1.820 1.820 3 24 1.820 25 302
2 1.878 1.878 2 ˝ 1.878 54 693
1 1.962 2.046 1 ˝ 1.962 163 >2000

Table 3: Performance Comparison

9

Best Relaxation Heuristic r-Best Algorithm
OD k-Similar Cost on Shared No. of Cost on No. of
Pair k Path Cost Solution Links SP Calls Solution r SP Calls
10 6-3 1.714 1.714 3 21 1.714 2 11

2 1.734 1.734 2 ˝ 1.734 4 30
1 1.764 1.784 0 ˝ 1.764 7 60

11 6 1.791 1.791 6 20 1.791 2 10
3-1 1.834 1.834 0 ˝ 1.834 3 19

12 6 1.581 1.581 6 25 1.581 4 30
3 1.736 1.736 3 ˝ 1.736 21 210
2 1.821 1.949 0 ˝ 1.821 51 545
1 1.932 1.949 0 ˝ 1.932 112 1292

13 6 2.516 2.516 5 25 2.516 5 28
3 2.569 2.574 2 ˝ 2.569 10 88
2 2.574 2.574 2 ˝ 2.574 12 111
1 2.612 2.612 1 ˝ 2.612 18 174

14 6 1.299 1.299 5 25 1.299 2 8
3 1.552 1.633 2 ˝ 1.552 19 152
2 1.633 1.633 2 ˝ 1.633 29 252
1 1.764 1.764 1 ˝ 1.764 86 834

Table 4: Performance Comparison, cont’d

shortest path calls was greater than that required for OD pair 7, although the latter
had roughly twice as many links in its best path.

However, the number of shortest path calls required by ther-best method does
depend on the value of the overlap constraint. Specifically, if the constraintk is
comparable to the number of links in the best path, ther-best method tends to
solve the problem relatively quickly (the number of shortest path calls are shown
in bold in these cases). For OD pairs with more links in the best path, ther-best
method usually must generate a much greater number of paths before finding one
that meets the same constraint. As the constraint is tightened, ther-best method
tends to do even more poorly. Since the number of shortest path calls required by
the heuristic is the same regardless of the “tightness” of the overlap constraint, the
relaxation method typically performs much better on these problems.

Exceptions exist, of course. In the trials for OD pair 7, the second-best (and
third-best, etc.) path was disjoint. As a result, the relaxation method andr-best

10

path method yielded the same solutions for every constraint, with the latter method
requiring slightly fewer calculations. In addition, ther-best method “won” all 4
trials associated with OD pair 11. In a quarter of the trials, however, over 2000
shortest path calls were made without ther-best method providing a solution at
all. For OD pair 1, for example, even the least stringent constraint (i.e., 6 shared
links) could not be met within this limit.

In general, for OD pairs for which the constraint is small with respect to the
number of links, the relaxation technique will be the faster option. Furthermore,
the heuristic stores at most 3 paths and is thus less memory-intensive.

CONCLUSIONS

Advanced Traveler Information Systems and Advanced Traffic Management Sys-
tems often require non-traditional path generation/finding methods. This paper
has considered one example of this – the generation of alternatives to the best
path. We have shown that existing methods of identifying alternative paths (i.e.,
link elimination methods andr-best methods) can be less than ideal, and we have
proposed an alternative based on the notion ofk-similar paths. We have also
shown how Lagrangian Relaxation methods can be used to efficiently identify
optimal or near-optimal solutions.

REFERENCES

1. Cherkassky, B.V., A.V. Goldberg, and T. Radzik. “Shortest Path Algo-
rithms: Theory and Experimental Evaluation,”Mathematical Programming,
Vol. 73, pp. 129-174, 1996.

2. Ziliaskopoulos, A. and H.S. Mahmassani. “Time-Dependent, Shortest-Path
Algorithm for Real-Time Intelligent Vehicle Highway System Applications,”
Transportation Research Record, Vol. 1408, pp. 94-100, 1993.

3. Kaufman, D.E. and R.L. Smith. “Fastest Paths in Time-Dependent Net-
works for IVHS Application,”IVHS Journal, Vol. 1, pp. 1-12, 1993.

4. Handler, G.Y, and I. Zang. “A Dual Algorithm for the Constrained Shortest
Path Problem,”Networks, Vol. 10, No. 4, pp. 293-310, 1980.

11

5. Held, M. and R. Karp. “The Traveling Salesman Problem and Minimum
Spanning Trees,”Operations Research, Vol. 18, pp. 1138-1162, 1970.

6. Held, M. and R. Karp. “The Traveling Salesman Problem and Minimum
Spanning Trees: Part II,”Mathematical Programming, Vol. 6, pp. 62-88,
1971.

7. Geoffrion, A. “Lagrangian Relaxation for Integer Programming,”Mathe-
matical Programming Study, Vol. 2, pp. 82-114, 1974.

8. Dijkstra, E.W. “A Note on Two Problems in Connection with Graphs,”Nu-
merische Math., Vol. 1, pp. 269-271, 1959.

9. Dial, R. “Algorithm 360: Shortest Path Forest with Topological Ordering,”
Communications of ACM, Vol. 12, pp. 632-633, 1969.

10. Tarjan, R.E.Data Structures and Network Algorithms, CBMS 44 (Pennsyl-
vania: SIAM, 1983).

11. Yen, J.Y. “Finding the K Shortest Loopless Paths in a Network,”Manage-
ment Science, Vol. 17, No. 11, pp. 712-716, 1971.

12

