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Introduction

Some History

First Generation:
A map

Second Generation:
Add the current location

Third Generation:
Add directions
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Introduction

Required Technologies

First Generation:
Processor and storage
Graphical display device (probably color)
Input devices (e.g., keyboard, pointing device)
Software for manipulating raster/vector data
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Introduction

Purposes of This Talk

Describe some of the “classical” algorithms that have been used

Describe some of my research in this area

Make sure that you can, if you want, implement your own system

Interest you in pursuing the “open questions” in this area
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Positioning

Global Positioning System Basics

The Satellites:
24 satellites in 6 evenly-spaced orbits with radii of 26,560km
Each satellite circles the Earth every 11 hours and 58 minutes

The Coordinate Systems:
Geocentric (i.e., the origin is at the center of the Earth)

(0,0,0)

(x1
j, x2

j, x3
j)

(x1, x2, x3)

ρ j
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Positioning Triangulation

Triangulation with Perfect Clocks

Notation:
T j is the “actual” time satellite j transmits

T is the “actual” time that the signal is received

∆T j ≡ T − T j

c is the speed of light

An Important Relationship:
The distance is c ·∆T j
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Positioning Triangulation

Triangulation with Perfect Clocks (cont.)

The System to be Solved

√
(xi

1 − x1)2 + (xi
2 − x2)2 + (xi

3 − x3)2 = c ·∆T i√
(xj

1 − x1)2 + (x
j
2 − x2)2 + (x

j
3 − x3)2 = c ·∆T j√

(xk
1 − x1)2 + (xk

2 − x2)2 + (xk
3 − x3)2 = c ·∆T k
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Positioning Triangulation

Triangulation with Imperfect Clocks

Two Observations:
The time on the receiver’s clock when the signal is received, t, differs
from the “actual time” when the signal is received by the amount δ

The clocks on the satellites are not perfect so tj = T j + δj

The Implication:

∆T j ≡ T−T j = (t−δ)−(tj−δj) = (t−tj)+(δj−δ) = ∆tj+(δj−δ)
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Positioning Triangulation

Triangulation with Imperfect Clocks

The New System to be Solved

√
(xi

1 − x1)2 + (xi
2 − x2)2 + (xi

3 − x3)2 = c ·∆ti + c · δi − c · δ√
(xj

1 − x1)2 + (x
j
2 − x2)2 + (x

j
3 − x3)2 = c ·∆tj + c · δj − c · δ√

(xk
1 − x1)2 + (xk

2 − x2)2 + (xk
3 − x3)2 = c ·∆tk + c · δk − c · δ√

(xm
1 − x1)2 + (xm

2 − x2)2 + (xm
3 − x3)2 = c ·∆tm + c · δm − c · δ
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Positioning Triangulation

Using a Linear Approximation

First Order Taylor Series About x

ρj(x) ≈ ρj(x)− ∂ρj(x)
∂x1

∆x1 − ∂ρj(x)
∂x2

∆x2 − ∂ρj(x)
∂x3

∆x3

The Resulting System

ρj(x)− xj
1 − x1

ρj(x)
∆x1 − xj

2 − x2

ρj(x)
∆x2 − xj

3 − x3

ρj(x)
∆x3 = c ·∆tj + cδi − cδ

The New Unknowns
∆x1, ∆x2, ∆x3, and δ
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Positioning Coordinate Conversion

Ellipsoidal and Cartesian Coordinates

λ
φ

h

X1

X2

X3

P

Surface of
the Earth

Ellipsoid
Model of
the Earth

x1

x2

x3
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Positioning Coordinate Conversion

Obtaining the Latitude, Longitude and Altitude

From Ellipsoidal to Cartesian Coordinates:

x1 =

(
a2√

a2 cos2 φ+ b2 sin2 θ
h

)
cosφ cosλ

x2 =

(
a2√

a2 cos2 φ+ b2 sin2 θ
h

)
cosφ sinλ

x3 =

(
b2

a2

a2√
a2 cos2 φ+ b2 sin2 θ

h

)
cosφ cosλ

From Cartesian to Ellipsoidal Coordinates:
Solve for (λ, φ, h) given (x1, x2, x3)
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Positioning Coordinate Conversion

A Closer Look at Altitude

Ellipsoid
Model of 
the Earth

Geoid Model
of the Earth
("Sea Level")

Surface of
the Earth

h

H

P
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Map Matching Notation

The Map-Matching Problem

Notation:
Finite set of streets, N

Reporting times, {0, 1, . . . , T}

Actual location at time t, P
t

Estimate location at time t, P t

The Problem:
Determine the street in N that contains P

t
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Map Matching Notation

The Map-Matching Problem (cont.)

An Important Issue:
We do not know the street system, N , exactly

More Notation:
Network representation, N

Each arc, A ∈ N , is a curve in R
2
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Map Matching Notation

The Map-Matching Problem (cont.)

Assumptions:
Arc A ∈ N can be completely characterized by a finite sequence of
points (A0, A1, . . . , Ana)

There is a one-to-one correspondence between the arcs in N and the
streets in N

Still More Notation:
A0 and Ana are referred to as nodes

(A1, A2, . . . , Ana−1) are referred to as shape points
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Map Matching The Problem

The Map-Matching Problem (cont.)

The Process

1 Match the estimated location, P t, with an arc, A in the “map”, N

2 Then determine the street, A ∈ N , that corresponds to the
person’s actual location, P t
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Map Matching The Problem

The Map-Matching Problem (cont.)

The Set of (Actual) Streets 

The Set of (Estimated) Arcs

The Person’s
Actual Location

The Estimated
Location

The Map−Matched
Location
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Map Matching Different Approaches

Geometric Point-to-Point Matching

The Idea:
Match P t to the “closest” node or shape point in the network

One Approach:
||x− y||2 =

√
(x1 − y1)2 + (x2 − y2)2
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Map Matching Different Approaches

Geometric Point-to-Point Matching (cont.)

A Difficulty

A0 A1
Pt

B0 B1 B2
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Map Matching Different Approaches

Geometric Point-to-Curve Matching

The Idea:
Identify the arc in N that is closest to P t

One Approach:
Let {λa+ (1− λ)b, λ ∈ R} denote the line, A, through a and b

d(c,A) =
√

[(a2−b2)c1+(b1−a1)c2+(a1b1−b1a2)]2]
(a2−b2)2+(b1−a1)2

p

q

A0

A1
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Map Matching Different Approaches

Geometric Point-to-Curve Matching (cont.)

One Difficulty

P0

B

A1

A2
B1B2

P1

P2
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Map Matching Different Approaches

Geometric Point-to-Curve Matching (cont.)

Another Difficulty

Arc  A

Arc  B

A0A1

B0B1

P0
P1

P2
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Map Matching Different Approaches

Geometric Curve-to-Curve Matching

The Idea:
Matching to the arc that is closest to the piecewise linear curve, P
defined by the points P 0, P 1, . . . , Pm

One Approach:
||A−B||min mina∈A,b∈B ||a− b||
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Map Matching Different Approaches

Geometric Curve-to-Curve Matching (cont.)

A Difficulty

B

A

P
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Map Matching Different Approaches

Geometric Curve-to-Curve Matching (cont.)

Another Approach:
||A−B||2 =

∫ 1

0
||a(t)− b(t)||dt

A Difficulty:
A A

P P

The Distance Between Equal
Length Subsets of P and A

The Distance Between 
All of P and All of A
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Map Matching Different Approaches

Geometric Curve-to-Curve Matching (cont.)

Another Approach:
“Correct” for differences in length

A Difficulty:

A

B
B1

A1 A2

B2

P1 P7
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Map Matching Different Approaches

Curve-to-Curve Matching Using Topology

A

B

C

D

C1

A1
A2

A3 A4 A5

B1

B2

B3

B4

D1

P1

P2
P3
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Map Matching Different Approaches

Curve-to-Curve Matching Using Topology (cont.)

A

B

C

D

P3

A

B

C

D

P3
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Route Finding

Route Finding

What We Now Know:
Where we are

What We Need:
How to get to the destination
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Route Finding Label Setting

An Abstract Label-Setting Algorithm

Make the origin the working node.
WHILE The working node is not the destination do the following:

Update the temporary labels and remember the smallest
Make the node with the smallest temporarily label permanent and
make it the new working node.

ENDWHILE
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Route Finding Label Setting

Label-Setting Details

FOR For all nodes that are reachable from the working node:
Calculate the distance to this node through the working node.
IF This distance is less than the nodes current label:

Set the nodes label equal to this distance.
Set the nodes predecessor equal to the working node.

ENDIF
IF The new label is less than the best so far:

Remember the node and its label.

ENDIF

ENDFOR
FOR For all temporary nodes:

IF The label is less than the best so far:
Remember the node and its label.

ENDIF

ENDFOR
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Route Finding Label Setting

Worst-Case Asymptotic Efficiency: A First Look

Number of Top-Level Iterations:
Each iteration “completes” one node
m nodes in the network

Work per Top-Level Iteration:
Update each node’s label (m of them)
Keep track of smallest

Overall Complexity:
m2
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Route Finding Label Setting

The Collection of Reachable Nodes

Updating Labels:
We know that only labels of nodes that are reachable from the
working node can change.

Each node can have an associated array of pointers to reachable
nodes.

Each node can only be updated as many times as there are inbound
arcs.

So, total work for updates equals the number of arcs.

Finding the Smallest Temporary Label:
We can “sort” the temporary nodes based on their labels.

Since we only ever want the smallest label, a good data structure to
use is a heap.
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Route Finding Label Setting

Worst-Case Asymptotic Efficiency: Revisited

Number of Top-Level Iterations:
Each iteration “completes” one node
m nodes in the network
Total work for updates is based on number of arcs (n)

Work per Top-Level Iteration:
Adjust the heap (logm)
Find the best node and remove it from the heap (logm)

Overall Complexity:
m logm+ n
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Route Finding When You’re Off-Route

What to do When You’re Off-Route

“Brute Force” Re-Calculation

Sensitivity Analysis

Pre-Calculation
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Route Finding Finding “Other” Routes

Other Interesting Routing Problems

Finding an Alternative Route

Incorporating Time and Tolls
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Route Finding Finding “Other” Routes

Alternatives to the Best Route

Common Approaches:
Link elimination
Find the r-best route

Unfortunately:
Link elimination can lead to infeasibilities
r-best routes are often similar to the best
Neither captures what users really want
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Route Finding Finding “Other” Routes

Alternatives to the Best Route (cont.)

Another Approaches:
A route p is k-similar to a route s if p and s have at most k links in
common

Some More Notation:
A denotes the node-arc incidence matrix which has components aij

defined as follows: aij = 1 if link j is directed out of node i,
aij = −1 if link j is directed into node i, and aij = 0 otherwise

The vector b denotes the origin and destination (i.e., bO = 1,
bD = −1, and bi = 0, i ∈ N − {O,D})

The vector c denotes link “costs”
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Route Finding Finding “Other” Routes

Alternatives to the Best Route (cont.)

An Optimization Formulation of the Traditional Problem

minx c�x
s.t. Ax = b

x ≥ 0
(1)

An Optimization Formulation of the k-Similar Problem

minx c�x
s.t. Ax = b

z�x ≤ k
x ∈ {0, 1}n

(2)
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Route Finding Finding “Other” Routes

Alternatives to the Best Route (cont.)

Using Lagrangian Relaxation

maxλ minx c�x+ λ(z�x− k)
s.t. Ax = b

x ≥ 0
(3)
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Route Finding Finding “Other” Routes

Incorporating Nonadditive Costs

Nonlinear Valuation of Time:
Component costs include time and money

Small amounts of time have relatively low value whereas large
amounts of time are very valuable

Nonadditive Tolls and Fares:
The tolls/fare on a path is almost never the sum of the tolls/fares
on the links in that path

Tolls on the NJ Turnpike:
To

Exit 1 Exit 2 Exit 3 Exit 4 Exit 5
Exit 1 0.45 0.70 0.95 1.20
Exit 2 0.45 0.45 0.60 0.85

From Exit 3 0.70 0.45 0.35 0.50
Exit 4 0.95 0.60 0.35 0.35
Exit 5 1.20 0.85 0.50 0.35
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Route Finding Finding “Other” Routes

Incorporating Nonadditive Costs (cont.)

Even More Notation:
t is the vector of times
τ is the vector of tolls
v is the value of time

An Optimization Formulation of the “Time and Tolls” Problem

minx v(t�x) + τ�x
s.t. Ax = b

x ∈ {0, 1}n.
(4)
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Route Finding Finding “Other” Routes

Motivating an Algorithm

Suppose we know the solution, x∗. Then, we could instead “solve”:

minx v
(
t�x
)

s.t. Ax = b
τ�x = τ�x∗

x ∈ {0, 1}n.

(5)

If v is monotone, then this is equivalent to:

minx t�x
s.t. Ax = b

τ�x = τ�x∗

x ∈ {0, 1}n

(6)

What we do is “guess” at x∗ and then solve this constrained
shortest path problem
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Route Finding Finding “Other” Routes

Visualization of the Algorithm

Time

Toll

x0
66666666666666666666666
66666666666666666666666
66666666666666666666666
66666666666666666666666
66666666666666666666666
66666666666666666666666

Dominated by x0

&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&
&&&&&&&&

Infeasible
w.r.t x0
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Route Finding Finding “Other” Routes

Visualization of the Algorithm - Forcing a New Solution

Time

Toll

x0

ε

CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCC

Possible Locations of x1
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Route Finding Finding “Other” Routes

Improving the Performance of the Algorithm

Time

Toll

0

Set of points with the same
composite cost as x0 

Solutions
dominated
by  x0 that
can be used
to terminate

Solutions dominated
by  x0

Solutions that
dominate  x0

t ( x  )0

y0

x0

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
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Conclusions

Conclusions

From the topics I covered today:
Research in mathematics has been important in the development of
PNS

Research in computer science has been important in the
development of PNS

From other things I’ve done:
Research in software engineering has been important in the
development of PNS
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Future Research

Next Generation Systems

Real-Time Traffic Requires Research On:
Combining data from multiple sources

Use of incomplete and stochastic data

Use of time-dependent data

Traffic forecasting

Hardware Changes Require Research On:
Effective use of multiple cores

Multi-modal trips (e.g., driver+transit+walk)

Coordination of multiple vehicles (e.g., “Where should we meet?”)
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