The Design and
Implementation of
Multimedia Software

Supplemental Material

David Bernstein

James Madison University

;.’ff: JAMES
eA FPMADISON

UNIVERSITYe

Preface

The book The Design and Implementation of Multimedia Software assumes that the reader
has a general understanding of object-oriented design and programming. This includes an
understanding of the fundamentals of object-oriented programming (OOP) like classes and
objects, abstraction, encapsulation, information hiding, the use of interfaces and abstract
classes, specialization and inheritance, overriding and overloading, and polymorphism. This
is standard material covered in most textbooks and undergraduate courses on object-oriented
programming.

However, The Design and Implementation of Multimedia Software also assumes that reader
has an understanding of some of the more common design patterns and experience with simple
multi-threaded programming in Java. Since many readers will not have this background, and
will not want to purchase books on each of these topics, this Supplement includes introductions
to these two topics.

Contents

S1Multi-Threaded Programs 1

S1.1 Motivation 1
S1.2 Getting Started with Threads 7
S1.3 Understanding Multi-Threading in Java 11
S1.3.1 “At the Same Time” 11
S51.3.2 The Thread Lifecycle in Java 11
S1.3.3 Types of Threads 12
S51.3.4 Interruption 13
S1.4 Tracing a Multi-Threaded Application 13
S1.5 Race Conditions 15
S1.6 Synchronization 16
S1.7 Liveness Failures 18
S1.8 Performance Failures 18
S1.9 Starting and Stopping Threads 24
S1.10Volatile Attributes 26

S2Design Patterns 29

S2.1 The Iterator Pattern 30
S2.1.1 Motivation 30
S2.1.2 Operations 31
S2.1.3 An Example 31
S52.1.4 Other Benefits 35

S2.2 The Singleton Pattern 38
S2.2.1 Motivation 38
S2.2.2 Operations 38
S2.2.3 Implementation 38
S2.2.4 An Example 38
S52.2.5 Thread Safety 40
S52.2.6 Other Approaches 41

S52.3 The Factory-Method Pattern 42
S2.3.1 Motivation 42
S2.3.2 Implementation 42
52.3.3 Close Variants 42
S2.3.4 An Example 43
S2.3.5 Related Patterns 46

S2.4 The Observer Pattern 47
S2.4.1 Motivation 47

Vi Contents

52.4.2 Structure 47
S2.4.3 Implementation Details 48
S2.4.4 Other Terminology 48
S2.4.5 An Example 48
S2.5 The Composite Pattern 55
S52.5.1 Motivation 55
S2.5.2 Implementation 55
S2.5.3 An Example 56
S2.6 The Decorator Pattern 59
S52.6.1 Motivation 59
52.6.2 Structure 59
S2.6.3 A Generic Application 60
S2.6.4 An Example 60
S52.6.5 Implementation Details 64
S2.7 The Strategy Pattern 65
S2.7.1 Motivation 65
52.7.2 The Pattern 65
S2.7.3 An Example 65

List of Figures

S1.1 A Simple Emergency Vehicle Dispatching System 1
S1.2 Specializing the Thread Class 8

S1.3 Implementing the Runnable Interface 8

S1.4 The Thread Lifecycle in Java 12

S2.1 The Iterator Pattern 32

S2.2 The Singleton Pattern 39

S2.3 The Factory-Method Pattern 42

S2.4 The Factory-Method Pattern with an Object Pool 43

S2.5 The Observer Pattern 47

S2.6 Another Version of the Observer Pattern 48

52.7 A Design for the SillyTextProcessor that is Not Cohesive 49
S52.8 A Design of the SillyTextProcessor that is Tightly Coupled 50
S52.9 A Good Design for the SillyTextProcessor 52

S2.10The Composite Pattern 55

S2.11An Example of the Composite Pattern 56

S2.12The Decorator Pattern 59

S2.13A Generic Application of the Decorator Pattern 60

S2.14An Example of the Decorator Pattern 61

S2.15Decorating a Graphics2D Object in Java 65

S2.16The Strategy Pattern 66

S2.17An Example of The Strategy Pattern 66

Vil

List of Tables

Multi-Threaded Programs

Almost everyone that uses a computer today is, at least implicitly, familiar with the concept
of multi-tasking because almost all modern operating systems allow users to “run more than
one application at a time”. The idea behind multi-threading is to allow each application to
“perform more than one task at a time”.

Motivation

To see why multi-threading is important in some situations, consider an emergency vehicle
dispatching system. In principle, such a system would allow an operator to track the current
location of all emergency vehicles, dispatch emergency vehicles in response to “real-time”
requests, and dispatch emergency vehicles on a regular schedule. This section only considers
the dispatching functions and use the design shown in Figure S1.1.

The Dispatcher class maintains a collection of all available vehicles. In order that the
vehicles be dispatched in a first-in-first-out manner, it uses a queue (of ID numbers) as follows:

import java.util.LinkedList;

public class Dispatcher

{
protected int numberOfVehicles;
protected LinkedList<Integer> availableVehicles;
Dispatcher | | Maintains the collection of
vehicles and dispatches the
"next" vehicles

uses uses
DailyDispatchHandler RealTimeDispatchHandler

Figure S1.1 A Simple Emergency Vehicle Dispatching System

2 Supplement S1 Multi-Threaded Programs

public Dispatcher(int n)

{
int i;
number0fVehicles = n;
availableVehicles = new LinkedList<Integer>();
for (i=0; i < mn; i++)
{

makeVehicleAvailable(i);

}

}

}

When the dispatch() method is called, the next available vehicle is removed from the front
of the queue and sent a message.

@ public boolean dispatch(String task)
{
boolean ok;
int vehicle;
Integer v;
ok = false;
v = availableVehicles.removeFirst();
if (v == null) ok = false;
else
{
vehicle = v.intValue();
sendMessage (vehicle, task);
ok = true;
}
return ok;
}

®

S1.1 Motivation 3

private void sendMessage(int vehicle, String message)

{
// This method would normally transmit the message
// to the vehicle. For simplicity, it now writes it
// to the screen instead.
System.out.println(vehicle+"\t"+message+"\n");
System.out.flush();

}

When a vehicle completes its assigned task, its ID number is added to the end of the queue.

public void makeVehicleAvailable(int vehicle)

{

availableVehicles.addLast (new Integer(vehicle));

}

Now consider a DailyDispatchHandler that uses a Dispatcher object to handle a set of
“regular” dispatches (i.e., dispatches that get handled in the same order every day) that are
read in from a file. Each record in the “daily dispatch file” contains two fields, the task to be
performed and the amount of time to wait before dispatching a vehicle to perform this task.

import java.io.*;
import java.util.x*;

public class DailyDispatchHandler
{
private Dispatcher dispatcher;
private String fileName;

public DailyDispatchHandler (Dispatcher d, String f)
{

dispatcher = d;

fileName = f;

4 Supplement S1 Multi-Threaded Programs

The actual work is done by the processDispatches() method. This method reads each line
form the file, tokenizes the line into its two fields, loops until the appropriate amount of time
has elapsed, and then calls the Dispatcher object’s dispatch() method.

public void processDispatches()

{
BufferedReader in;
int wait;
long currentTime, lastTime;
String line, message;

StringTokenizer st;

try
{

in = new BufferedReader(new FileReader (fileName));
lastTime = System.currentTimeMillis();

while ((line = in.readLine()) !'= null)

{
st = new StringTokenizer(line,"\t");
wait = Integer.parselnt(st.nextToken());
message = st.nextToken();

// Wait until the appropriate time before
// dispatching this vehicle

//

while (System.currentTimeMillis()-lastTime
< wait)

{

// Do nothing
}

dispatcher.dispatch(message) ;
lastTime = System.currentTimeMillis();

S1.1 Motivation 5

catch (IOException ioe)
{

System.out.println("No daily dispatches "+

"in: "+fileName);

}
catch (NoSuchElementException nsee)
{

System.out.println("Problem in file: "+fileName);
}

}

The dispatching process is started by a call to the start () method.

public void start()
{

processDispatches();

}

If you create a driver that constructs a DailyDispatchHandler and call its start () method
you will see that it does what it is supposed to.

However, now suppose that, in addition to the DailyDispatchHandlerer, there is also a
similarly implemented RealTimeDispatchHandler.!

import java.io.*;
import java.util.;

public class RealTimeDispatchHandler
{

private Dispatcher dispatcher;

public RealTimeDispatchHandler (Dispatcher d)
{

dispatcher = d;
}

LGiven the similarities between the DailyDispatchHandlerer and RealTimeDispatchHandler classes, one
could have created a more generic class that would handle both types of dispatches. Two different classes are
used because it makes the discussion that follows somewhat easier to understand.

6 Supplement S1 Multi-Threaded Programs

public void processDispatches()

{
BufferedReader in;
String message;
try
{
in = new BufferedReader(
new InputStreamReader (System.in));
while ((message = in.readLine()) != null)
{
dispatcher.dispatch(message) ;
}
}
catch (IOException ioe)
{
System.out.println("Problem with the console");
}
}
public void start()
{
processDispatches();
}

and execute the following driver:

import java.io.*;
import java.util.Date;

public class Driver

{
public static void main(String[] args) throws IOException
{
BufferedReader in;
DailyDispatchHandler daily;
Dispatcher dispatcher;
RealTimeDispatchHandler rt;
String userInput;

in=new BufferedReader (new InputStreamReader (System.in));

S1.2 Getting Started with Threads 7

dispatcher = new Dispatcher(50);

daily = new DailyDispatchHandler(dispatcher,
"dispatches.txt");
daily.start();

rt = new RealTimeDispatchHandler (dispatcher);
rt.start();

As the two classes above have been implemented, the RealTimeDispatchHandler can’t start
doing any work until the DailyDispatchHandler has completed its job. That is, the while
loop in the processDispatches() method of the DailyDispatchHandler maintains control
of the CPU until all of the daily dispatches have been completed.

What is needed is a way for multiple objects to use the Dispatcher “at the same time”
(a phrase that is clarified in Section S1.3.1 on page 11). This can be accomplished using
multi-threading.

Getting Started with Threads

If you print out all of the classes in one of your applications on a big piece of paper (and you
are a beginning programmer), you can trace its execution by drawing a single line connecting
the statements in the order in which they are executed. This line can be thought of as a visual
representation of the “thread of execution” for the application.

If multiple things happen “at the same time” in an application, then you can not trace
its execution using a single line. Instead, you need to draw a separate line (each in its own
color?) for each of the “threads of execution”. If, at any point, two things happen “at the
same time” then you need two line/threads, etc...

In Java you can make an application multi-threaded by taking advantage of the func-
tionality of the Thread class. Omne way to do this is to create a class, for example,
ClassForApproachOne, that extends the Thread class and put the code that should be exe-
cuted in a separate thread of execution in the run() method. This is illustrated in Figure S1.2
on the following page. One must then create an instance of ClassForApproachOne and call
it’s (inherited) start () method. This causes the Java Virtual Machine to create a new thread
of execution and call the ClassForApproachOne object’s run() method in that thread of
execution.

There are two problems with this approach, one conceptual and one practical. The concep-
tual problem is that it often leads people to believe that, because the specialization relationship
is often called the “is a” relationship, the ClassForApproachOne object is a thread of exe-
cution. Unfortunately, while it “is a” Thread object, it is not a thread of execution. The

8 Supplement S1 Multi-Threaded Programs

java.lang.Thread
The default Iil +Thread()
constructor isused | - - - - - +Thread(r : Runnable)
+start()

| ClassForApproachOne | |Calling the start()
+run() |~ [method causes a
call to the run()
method in a
separate thread of
execution

Figure S1.2 Specializing the Thread Class

java.lang.Thread <<Interface>>
+Thread() runs java.lang.Runnable
+Thread(r : Runnable) +run()
+start() A

The explicit value ClassForApproachTwo -
constructor is used Calling the.
Thread object's

start() method
causes a call to

the run() method
in a separate
thread of

Figure S1.3 Implementing the Runnable Interface

practical problem is that, because Java does not support multiple inheritance, a class that
extends Thread can’t extend another class.

A better way to create a multi-threaded application is to create a class, for example,
ClassForApproachTwo, that implements the Runnable interface as illustrated in Figure S1.3.
Again, the code that should be executed in a separate thread of execution is put in the run()
method. In this case, a Thread object must be constructed using the explicit value constructor,
passing in the Runnable object. Then, when the Thread object’s start() method is called,
the Runnable object’s run() method is called in the separate thread of execution.

One common way to use this approach is to include a Thread object as an attribute of
the class that implements the Runnable interface. The thread of execution associated with
the Thread object, and the Thread object itself, is then called the “control thread” for the
Runnable object.

As an example, DailyDispatchHandler class is modified so that it does its work in its own
thread of execution. The first thing to do is move the code from the processDispatches()
method that should execute in a separate thread into the run method and indicate that the
class now implements the Runnable interface.

import java.io.*;
import java.util.;

S1.2 Getting Started with Threads

public class DailyDispatchHandler implements Runnable
{

private Dispatcher dispatcher;

private String fileName;

private Thread controlThread;

public DailyDispatchHandler (Dispatcher d, String f)
{

dispatcher = d;

fileName = f;

public void run()

{
BufferedReader in;
int wait;
String line, message;

StringTokenizer st;

try

{
in = new BufferedReader(new FileReader(fileName));
while ((line = in.readLine()) !'= null)
{

st = new StringTokenizer(line,"\t");
wait = Integer.parselnt(st.nextToken());
message = st.nextToken();

try

{
// Sleep the appropriate amount of time
// before dispatching the vehicle. Other
// threads can execute while this one
// is sleeping.
//

controlThread.sleep(wait);

}
catch (InterruptedException ie)
{
// Do nothing
}

dispatcher.dispatch(message) ;

10 Supplement S1 Multi-Threaded Programs

}
3
catch (IOException ioe)
{
System.out.println("No daily dispatches "+
"in: "+fileName);
}
catch (NoSuchElementException nsee)
{
System.out.println("Problem in file: "+fileName);
¥
}
}

Next, it is necessary to to change the start() method so that it creates a new thread
of execution and processes the daily dispatches using this thread. This is accomplished
by creating a Thread object and associating it with a Runnable object (in this case, this
DailyDispatchHandler object). Then the Thread object’s start () method is called.

public void start()
{
if (controlThread == null)
{
controlThread = new Thread(this);
controlThread.start();
¥
}

Now when a DailyDispatchHandler object’s start() method is called, the following
things happen:

1. A Thread object named controlThread is constructed (causing a thread of execution to
be created).

2. The Thread object’s start () method is called (causing the thread of execution to be
“started”).

3. The DailyDispatchHandler object’s run() method is called in the new thread of exe-
cution.

The run() method iteratively reads dispatch information from the file and calls the

S1.3 Understanding Multi-Threading in Java 11

dispatch() method until the end of stream indicator is reached. At this point, the thread of
execution “drops out of” the run() method and, as discussed in Section S1.3.2 on the following
page, it dies.

There is one other important change in this version of the DailyDispatchHandler class
— the run() method now puts the controlThread object to sleep rather than looping until
the appropriate amount of time has passed. This is an example of cooperative behavior. That
is, rather than use the CPU needlessly, this approach allows other threads time to run on the
CPU.

Now, because the DailyDispatchHandler object processes the dispatches file in a separate
thread of execution, a RealTimeDispatchHandler can get some work done. In other words,
one can now have two different objects dispatching vehicles “at the same time”.

This can be demonstrated with the driver used earlier. In this case, the
RealTimeDispatchHandler does its work in the “main” thread and the DailyDispatchHandler
does its work in its own thread.

Understanding Multi-Threading in Java

Before going any further, it is important to consider some of the details of the way the Java
Virtual Machine manages threads.

SYRCHE “At the Same Time”

Though it is common to use the phrase “at the same time” when talking about threads, it is
important to understand that this phrase must be taken lightly. While some computers can
execute more than one thread at a time (e.g., a computer with multiple CPUs, a computer
with one CPU that has multiple cores?), many can’t execute multiple threads simultaneously
and yet can still support multi-threading. This is accomplished by executing the threads at
almost the same time. In other words, the threads can take turns using the CPU.

Different operating systems handle mult-threading in different ways. Some use time slicing
(sometimes called a round robin approach) in which the operating system allocates CPU time
to threads. Others use a cooperative approach in which each thread controls how much CPU
time it needs (hence a thread must yield control to other threads). MS-Windows uses a time
slicing approach whereas most flavors of Unix/Linux support both approaches.

When writing multi-threaded programs in Java you should not make any assumptions
about the underlying operating system or the number of CPUs. In particular, the Java sched-
uler does not implement time-slicing directly and, hence, does not guarantee it. Java schedules
threads based on their priority. The scheduler chooses the runnable thread with the highest
priority.

SYMCWA The Thread Lifecycle in Java

As shown in the UML statechart diagram in Figure S1.4 on the next page a Java Thread
object can be in one of four states, New Thread, Runnable, Not Runnable, or Dead. When a

2You can determine the number of available processors using the availableProcessors() method in the
RunTime class.

12 Supplement S1 Multi-Threaded Programs

" Nof Runnable)
Not Runnable
0

sleep
Sleeping

yield

end sleep oo
~—

; 0
wait

Runnable \I/ Waiting

notify

new New Thread start

run method terminates

oo
~———

0
block | Blocked

oo
. endblock | N~ —— —/
~ @@

Figure S1.4 The Thread Lifecycle in Java

Thread is in the New Thread state, no system resources have been allocated to it, and none
of its methods can be called except start(). The start() method allocates the necessary
resources, schedules it to run, and calls the run() method. At this point the Thread is in
the Runnable state. (It may or may not be “running” because it may be waiting for its turn
on the CPU. For this reason, it is inappropriate to distinguish the “running” state from the
“runnable” state.)

A Thread moves from the Runnable state to the Not Runnable state if its sleep () method
is called, if it calls the wait () method, or if it is blocking (e.g., on input or output). The way
a Thread goes from Not Runnable to Runnable depends on how it became Not Runnable — a
call to sleep() causes it to remain Not Runnable for a pre-specified amount of time, if it is
“waiting” then it transitions after it is “notified” (see page 21), and if it is blocking then it
transitions when it stops blocking (e.g., after the input or output operation completes).

Note that a sleep(duration) call does not stop execution of the thread for exactly
duration milliseconds, it stops execution for at least duration milliseconds. That is, the
thread will not be scheduled for execution until duration milliseconds have elapsed. When it
actually is executed will depend on the number and priority of other threads being scheduled.

Also note that every method that causes a thread to transition from Runnable to Not
Runnable throws an InterruptedException, which is a checked exception. This enables the
thread to respond to “abnormal requests” that it transition back to Runnable. In other words,
this enables one thread of execution to call a Not Runnable thread of execution’s interrupt ()
method, thereby requesting that it change state.

YMCRCE Types of Threads

Every Thread object has a setDaemon () method that can be used to set the daemon status of
its associated thread of execution. When a thread is created, it has the same daemon status
as the thread that created it. If you want to change the daemon status, you must call the

S1.4 Tracing a Multi-Threaded Application 13

setDaemon () method before you call the start () method.

A thread should be marked as a daemon only if it can be safely destroyed at any time
(i.e., only if it is safe to stop executing code in that thread at any time). As a result, daemon
threads should not be used frequently.

Daemon threads are normally used for background/helper activities. For example, the
Java Virtual Machine runs the garbage collector in a daemon thread.

SYMCR:N |nterruption

Every Thread object has an interrupt () method that can be used to set its interrupt status
to true. This method is used to ask a thread to stop what it is currently doing. It is important
to recognize that a thread need not be cooperative. That is, a call to the interrupt () method
does not “cancel” the method being executed in a runnable thread, it simply changes the state
of the interrupt status. The thread may or may not stop what it is doing as a result of this
change of state.

Even in classes in the java.lang package, some methods act on this state change and
some do not. For example, the sleep() method in the Thread class and the wait () method
in the Object class both throw an InterruptedException (and clear the interrupt status) if
the interrupt status is true.?

If you want to write a method that can be “cancelled” you need to include code that
checks the interrupt status periodically using the isInterrupted() method in the Thread
class. Obviously your documentation should include a description of when the method can be
“cancelled” and how it responds.

Tracing a Multi-Threaded Application

While it is nice, conceptually, to imagine multi-colored lines illustrating the execution order of
a multi-threaded application, it is not very practical. A better approach is to write a "number”
next to each line of code indicating the thread it is executed in and the order in which it is
executed.

In the example below, lines in the main thread are numbered using 1,2,3..., lines in the
second thread are numbered using A,B,C..., and line in the third thread are numbered using
a,b,c... (For the purposes of this example, declarations of classes, variables, or methods are
not treated as executable.)

public class SlasherDriver

{
public static void main(String[] args)
{
Slasher plus, slash;
1 slash = new Slasher();
6 slash.setCount(3);
8 slash.start();

3Since this is a checked exception, it must either be caught or specified (i.e., re-thrown).

14 Supplement S1 Multi-Threaded Programs

10 plus = new Slasher("+");
14 plus.setCount (2);
16 plus.start();
}
}
public class Slasher implements Runnable
{
private int count;
private String symbol;
private Thread controlThread;
public Slasher()
{
2 this("/");
}
public Slasher(String symbol)
{

311 this.symbol = symbol;
412 count = 0;
513 controlThread = new Thread(this);

}
public void run()
{
A CEG for (int i=0; i<count; i++) ace
{
BDF System.out.print(symbol); bd
}
}
public void setCount(int count)
{
7 15 this.count = count;
}
public void start()
{
917 controlThread.start();
}

}

In the main thread, the first line to be executed is the first line in the main method.
Control is then transferred to the default constructor of the Slasher class and then to the
explicit value constructor. Control is then returned to main. Notice that the creation of the
Thread object does not start a new thread of execution since the Thread object is in the “new
thread” state.

The next thing that happens in the main thread is that the Slasher object’s setCount

®

S1.5 Race Conditions 15

method is called. Notice that this happens in the main thread — only the code in the run
method (and any code called from it) is executed in the controlThread object’s thread of
execution.

After the return from the setCount method, the next thing that happens in the main
thread is that the start () method in the slash object is called. At this point, the start ()
method in the controlThread object is called and a second thread of execution is started.

Now, two things are happening ”at the same time”. In the main thread, control is returned
to the main() method. In the second thread, the run() method of the slash object called.
FEach of these threads then continues as you would expect.

Ultimately, the start () method of the plus object is called and there are three things
happening “at the same time”.

Race Conditions

Conflicts can arise when more than one thread is using the same object. For example, suppose
two threads are both using the same Dispatcher object and both are executing the following
(modified) dispatch() method:

public boolean dispatch(String task)
{

boolean ok;

int vehicle;

Integer v;

ok = false;
if (availableVehicles.size() > 0)
{
v = availableVehicles.removeFirst();
vehicle = v.intValue();
sendMessage(vehicle, task);
ok = true;
}
else
{
ok = false;

}

return ok;

A very serious problem can arise when there is only one vehicle in the queue.

16 Supplement S1 Multi-Threaded Programs

In particular, suppose the first thread executes all of the code up to and including the
evaluation of (availableVehicles.size() > 0) and then runs out of time. Further, sup-
pose the seconds thread executes all of the code in this method before it runs out of time. At
this point, there will be no vehicles in the queue since the seconds thread removed the only
vehicle. Unfortunately, when the first thread starts executing again, it will proceed as if it had
never been off the CPU and will attempt to get a vehicle from the queue, causing an exception

This is an example of a race condition — code that causes the correctness of a computation
to depend on the relative timing of different threads. Specifically, it is an example of a check-
then-act condition. In between the time that the check was performed and the action was
taken the state of the object changed in a way that caused problems.

Though this particular race condition can be avoided using the original implementation
of the dispatch() method, they are often much more tenacious. Consider, for example, the
following method which contains a read-modify-write condition:

public int getNextIndex()
{

return ++index;

}

The expression ++index actually performs three operations — load the value, increment the
value, and store the value. In other words, it is not an atomic operation. As a result, two
threads can actually be given the same value for the next index. This happens when the first
thread executes the load then stops, the second thread executes the load then stops, the first
thread increments then stops, the second thread increments then stops, the first thread stores
then stops, and the second thread stores then stops.

Synchronization

In theory, race conditions can be prevented in a variety of different ways. Far and away the
simplest and the most popular are synchronized blocks/methods.*

In Java, every object (and class) has a “concurrency protection” object associated with it,
called a monitor (or an intrinsic lock). When a thread of execution reaches a synchronized
block or method it attempts to acquire the relevant monitor. (In the case of a synchronized
block the relevant object is specified explicitly. In the case of a synchronized method the
relevant object is implicitly referenced by this.) A thread of execution can only enter a
synchronized method /block if it can acquire the relevant monitor. In addition, only one thread
can acquire a monitor at a time (making the monitor a mutex or mutual exclusion lock). A
thread of execution that cannot obtain the monitor blocks® In essence, this means that it does
nothing but “periodically” try to obtain the monitor.

4Classes in the java.util.concurrent allow for the use of alternative, and more sophisticated, techniques.

5The terms “block” and “blocks” are completely unrelated. “Block” is used as a noun, whereas “blocks” is
used as as verb (not the plural of “block”).

S1.6 Synchronization 17

What all of this means is that only one thread at a time can be executing a synchronized
block/method, thereby eliminating the possibility of a race condition. When a thread exits a
synchronized block/method it releases the monitor, allowing other threads that are blocking
to obtain the monitor and proceed.

The access modifier synchronized is used to indicate that a thread of execution can only
enter a method/block if it can obtain the associated monitor. For a method, the sychronized
modifier must appear where other modifiers (e.g., public, private, static, etc...) can appear,
before the return type. For a block, the synchronized modifier, followed by parentheses
containing the name of the monitor, must appear before the { that defines the start of the
block.

A synchronized method is illustrated in the following modified version of the dispatch()
method in the Dispatcher class:

public synchronized boolean dispatch(String task)
{
boolean ok;
int vehicle;
Integer v;
ok = false;
v = availableVehicles.removeFirst();
if (v == null) ok = false;
else
{
vehicle = v.intValue();
sendMessage (vehicle, task);
ok = true;
}
return ok;
}

Since the entire method is synchronized, only one thread can be “in” it a time. Thus, there is
no possibility of the threads being interleaved in this method in a way that causes a failure.
In essence, the entire method now behaves as if it were atomic.

Unfortunately, an important fault still remains since there are other methods in
the class that change state. In particular, both the dispatch() method and the
makeVehicleAvailable() method change the attribute availableVehicles. Hence, one
thread can be in the dispatch() method removing vehicles from the availableVehicles
queue and another thread can be in the makeVehicleAvailable() method adding vehicles
to the availableVehicles queue. Since the LinkedList object availableVehicles is not

18 Supplement S1 Multi-Threaded Programs

thread safe, this can cause problems.®

Hence, the code in the makeVehicleAvailable () method that changes state must also be
synchronized, and it must be synchronized with the same monitor. Since the dispatch()
method implicitly uses this as its monitor, the easiest way to do this is to make the
makeVehicleAvailable () synchronized, as follows:

public synchronized void makeVehicleAvailable(int vehicle)

{

availableVehicles.addLast (new Integer(vehicle));

}

It is important to realize that one thread can acquire the same monitor multiple times.
That is, monitors in Java are reentrant. Java uses a counter to keep track of how many times
a thread has acquired a particular monitor.

Liveness Failures

A liveness failure is a state in which an application/algorithm is unable to make any progress.
The most obvious example in single-threaded applications in the “infinite loop”. In multi-
threaded applications with synchronized blocks/methods, liveness failures can result from
much more subtle faults. Two of the most common are deadlock and livelock.

Deadlock arises when two or more threads are waiting on conditions that can’t be satisfied.
For example suppose that thread 1 has acquired monitor m but needs to acquire monitor n to
continue, and that thread 2 has acquired monitor n but needs to acquire monitor m to continue.
These two threads are said to be in deadlock (because of a cyclic locking dependency).

Livelock arises when a thread can’t make progress because it repeatedly attempts an
operation that fails. This can occur when two threads are too cooperative (i.e., each attempts
to get out of the other’s way).

The design of applications that avoid these problems is beyond the scope of this book.
Fortunately, if you are careful, they are unlikely to arise in the kinds of applications that are
consider here.

Performance Failures

In addition to liveness failures, when writing multi-threaded applications one must also be
concerned with the possibility of performance failures. That is, it is fairly easy to write multi-
threaded applications that do not satisfy performance requirements.

SThe “new” collections in Java, unlike the “original” collections Hashtable and Vector, are not thread safe
by default. It is, however, possible to decorate (in the sense of the Decorator pattern) the “new” collections and
make them thread safe. In the case of a LinkedList this is done with the static method synchronizedList ()
in the Collections class.

®

®

S1.8 Performance Failures 19

In fact, though it’s not immediately obvious, the dispatching system implemented thus far
is likely to suffer from performance problems. The reason you haven’t noticed any performance
problems is that, thus far, the messaging process has been simulated using console output.
However, notice that the sendMessage () method in the Dispatcher class is being called from
the dispatch() method in the Dispatcher class which, in turn, is being called by either the
DailyDispatchHandler or the RealTimeDispatchHandler. Hence, in the case of the former,
the sendMessage () methods is being executed in the DailyDispatchHandler object’s thread
and, in the case of the latter, the sendMessage() methods is being executed in the main
thread. In both cases, if that thread blocks, the processing of dispatches stops.

A better approach is to have the dispatch() method in the Dispatcher class return
almost immediately, and to have the messaging code execute in another thread. To achieve
the first objective it is necessary to add a “task queue” to the Dispatcher class and change
the dispatch() method so that it just adds the task to the task queue and returns. This is
implemented below:

public void dispatch(String task)
{
// Add a task to the queue
tasks.add(tasks.size(), task);

To achieve the second objective it is necessary to make the Dispatcher class implement
Runnable and add a Thread object. This is implemented as follows:

import java.util.x;

public class Dispatcher implements Runnable

{
private int number0fVehicles;
private List<Integer> availableVehicles;
private List<String> tasks;
private Thread dispatchThread;

public Dispatcher(int n)
{

int i;

number0fVehicles = n;

20 Supplement S1 Multi-Threaded Programs

availableVehicles =
Collections.synchronizedList (new LinkedList<Integer>());

tasks =
Collections.synchronizedList(new LinkedList<String>());

for (i=0; i < n; i++) makeVehicleAvailable(i);
// Start the thread

dispatchThread = new Thread(this);
dispatchThread.start();

}

private void sendMessage(int vehicle, String message)

{
// This method would normally transmit the message
// to the vehicle. For simplicity, it now writes it
// to the screen instead.
System.out.println(vehicle+"\t"+message+"\n");
System.out.flush();

}

Note that the LinkedList objects are made thread safe to avoid any potential race conditions
that might arise.
This leads to the following run() method:

public void run()
{

while (true)

{

processPendingDispatches();

try
{
dispatchThread.sleep(1000);
}
catch (InterruptedException ie)

{

// Shouldn’t be interrupted. If it is,

S1.8 Performance Failures 21

// just continue.

and the following processPendingDispatches() method:

private void processPendingDispatches()
{

int vehicle;

Integer v;

String task;

while ((availableVehicles.size()>0) && tasks.size()>0)
{

v = availableVehicles.remove (
availableVehicles.size()-1);

task = tasks.remove(tasks.size()-1);

vehicle = v.intValue();
sendMessage (vehicle, task);

Note that the dispatchThread object is put to sleep for 1000 milliseconds after it processes
dispatches so that the other threads can be allowed to modify the two queues.

While this approach works, it is somewhat troubling to be putting the dispatchThread
object to sleep for an arbitrary amount of time. It would be better for the dispatchThread
to wait until there are either new tasks to be dispatched or new vehicles to dispatch them to.
This can be accomplished this using the wait () and notify() methods in the Object class.

For sake of clarity, this class again uses unsynchronized LinkedList objects and, instead,
uses an Object named lock for block-level synchronization as follows:

import java.util.LinkedList;

public class Dispatcher implements Runnable

{
private int number0fVehicles;
private LinkedList<Integer> availableVehicles;

22

{

}

{

Supplement S1 Multi-Threaded Programs

private LinkedList<String> tasks;
private Thread dispatchThread;

private final Object lock = new Object();

public Dispatcher(int n)

int i;

number0fVehicles = n;

availableVehicles = new LinkedList<Integer>();
tasks = new LinkedList<String>();

for (i=0; i < n; i++)
{

makeVehicleAvailable(i);
}

dispatchThread = new Thread(this);
dispatchThread.start();

private void sendMessage(int vehicle, String message)

// This method would normally transmit the message
// to the vehicle. For simplicity, it now writes it
// to the screen instead.

System.out.println(vehicle+"\t"+message+"\n");
System.out.flush();

Any code that wants to use the lock object for synchronization (i.e., any calls to wait(),
notify(), or notifyAll() methods) must appear in a synchronized block. This is because
a thread must have the lock object’s monitor before it can call these methods.

So, the dispatch() method must now be synchronized with the lock attribute:

public void dispatch(String task)

S1.8 Performance Failures

{
synchronized(lock)
{
// Add a task to the queue
tasks.addLast (task) ;
// Start the processing
lock.notifyAll();
}
}

23

as must the makeVehicleAvailable() method:

public void makeVehicleAvailable(int vehicle)
{
synchronized(lock)
{
// Put the vehicle in the queue
availableVehicles.addLast(new Integer(vehicle));
// Start the processing
lock.notifyAll();
}
}

Now, the run() method can “wait” after it processes any pending dispatches:

public void run()

{
while (true)
{
synchronized (lock)
{
processPendingDispatches();
try
{

lock.wait();
}

catch (InterruptedException ie)

24 Supplement S1 Multi-Threaded Programs

// Shouldn’t be interrupted. If it is,
// just continue.

The thread is “notified” when there is a new task to dispatch and/or when there a new vehicle
is made available.

Starting and Stopping Threads

One big problem remains with this last version of the Dispatcher — the thread that is handling
the dispatches never dies since it never “drops out of” the run() method. This problem can
be corrected by adding a boolean attribute named keepRunning and modifying the run()
method as follows:

public void run()
{
while (keepRunning)
{
synchronized(lock)
{
processPendingDispatches();
try
{
lock.wait();
}
catch (InterruptedException ie)
{
// The stop() method was called in
// another thread
}
}
¥
dispatchThread = null;
}

A stop() method can then be added as follows:

S1.9 Starting and Stopping Threads 25

public void stop()
{
synchronized (lock)
{
keepRunning = false;
// Interrupt the thread in case it
// is waiting
dispatchThread.interrupt();
¥
}

and even a start() method that can be used to start and re-start the Dispatcher object:

public void start()
{
if (dispatchThread == null)
{
keepRunning = true;
dispatchThread = new Thread(this);
dispatchThread.start();
}
}

Note that the stop() method, in addition to assigning false to keepRunning, calls
the dispatchThread object’s interrupt() method. This helps ensure that the thread of
execution actually dies. Specifically, the dispatchThread object’s thread of execution might
be waiting in the Not Runnable state when stop() is called. If it is never notified to transition
to the Runnable state (i.e., if dispatch() or makeVehicleAvailable() are never called), it
will never die.

This class can be tested with the following driver:

import java.io.*;
import java.util.Date;

public class Driver

{

public static void main(String[] args) throws IOException

{

26 Supplement S1 Multi-Threaded Programs

BufferedReader in;
DailyDispatchHandler daily;
Dispatcher dispatcher;
RealTimeDispatchHandler rt;

String userInput;

in=new BufferedReader (new InputStreamReader (System.in));

dispatcher = new Dispatcher(3);

daily = new DailyDispatchHandler(dispatcher,
"dispatches.txt");
daily.start(Q);

// The Dispatcher is started after the
// DailyDispatchHandler in this example to show
// that the requests queue up

try
{
Thread.sleep(2000); // Put the current thread to sleep
}
catch (InterruptedException ie)
{
// Ignore
¥

dispatcher.start();

// Start the RealTimeDispatchHandler
System.out.println("After some dispatches, enter an EQS!");
rt = new RealTimeDispatchHandler (dispatcher);

rt.start();

// Vehicles are put back in the queue
dispatcher.makeVehicleAvailable(2);
dispatcher.makeVehicleAvailable(0);

// Stop the Dispatcher
dispatcher.stop(Q);

S1.10 \Volatile Attributes 27

‘ 3

SYMION \/olatile Attributes

If you give the discussion above any thought you will quickly realize that the stop() method
above is going to be executed in a different thread than the run() method. Given that this
is the case, one must consider whether they are both using the same attributes. If they are, a
synchronization problem could arise.

A cursory examination shows that they are, indeed, both using the attribute keepRunning.
Specifically, the thread that executes the stop() method will be “storing” to keepRunning
and the thread that executes the run() method will be “loading” from keepRunning.

Now, you might be inclined to think that this is not a problem since the “store” and “load”
operations must, surely, be atomic. In fact, there is a problem with this implementation,
though it is very subtle. It arises because Java does not ensure that changes to attributes that
are made in one thread propogate to other threads in the way you would expect. Specifically,
values can be “cached” (e.g., in registers or processor-specific caches) in such a way that they
are hidden from other threads.” Hence, one has to be concerned about memory visibility.

In this case, the problem can be fixed by declaring keepRunning to be volatile as follows:

private volatile boolean keepRunning;

Volatile attributes are, in essence, attributes that are shared across multiple threads. A “load”
of a volatile attribute in any thread always returns the most recent “store” performed in any
thread.

REFERENCES AND FURTHER READING [e s e oo oe oo s pppppppopooe:

Campione, M., Walrath, K. and Huml, A. (2001) The Java Tutorial: A Short Course on the Basics
Addison-Wesley Publishing Company, Reading, MA.

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D. and Lea, D. (2006) Java Concurrency in
Practice Addison-Wesley Publishing Company, Reading, MA.

Gosling, J., Joy, B., Steele, G. and Bracha, G. (2005) Java Language Specification Prentice Hall,
Upper Saddle River, NJ.

Herlihy, M. and Shavit, N. (2008) The Art of Multiprocessor Programming Morgan Kaufmann,
Cambridge, MA.

"In addition, the same operations can actually be performed in different orders in different threads. This is
done so that the JVM can take full advantage of multiprocessor architectures.

Design Patterns

As defined in Gamma et al. (1995), a software design pattern is a “description of communi-
cating objects and classes that is customized to solve a general design problem in a particular
context”. A design pattern has a lower level of abstraction then an architecture and a higher
level of abstraction that an algorithm or data structure. They are generally categorized as
either creational, structural, or behavioral.

The book The Design and Implementation of Multimedia Software relies on software design
patterns quite heavily. The heavy use of design patterns is based on the belief that the study
and use of design patterns helps designers avoid the kinds of bad decisions that have been
made in the past and benefit from the good ones. Good design patterns can be used “as is”
when appropriate, and they can be extended as necessary. The heavy use of design patterns
is also based on the belief that design patterns promote better communication (by providing
common terminology).

It is interesting (though not central to the main topic of this book) to note that this
same basic approach has been used in other design disciplines. For example, Alexander (1977)
discusses a pattern language for architectural design and Brown (1986) and Petroski (1994)
discuss design paradigms in structural engineering.

29

30 Supplement S2 Design Patterns

The Iterator Pattern

The iterator pattern is a behavioral pattern.

SYAME Motivation

One of the most powerful aspects of programming languages is that they give you the ability
to perform the same operation on multiple entities using a loop of some kind. Of course, this
requires that you have some way of aggregating the entities (e.g., in an array, list, table, etc...).

Unfortunately, traditional looping requires an understanding of the structure of the aggre-
gate object. For example, one loops over the elements in an array somewhat differently from
the way one loops over the elements in a vector, and both are very different from the way one
loops over a linked data structure.

In the following fragment the aggregate:

String city;

for (int i=0; i < cities.length; i++)
{
city = (String)cities[i];
System.out.println(city);

This fragment contains a for loop (which is preferred by many people when using arrays),
the termination condition uses the array’s length attribute, and the elements in the array are
accessed using the [] operator.

In the next fragment the aggregate is an ArrayList:

String city;

for (int i=0; i < cities.size(); i++)
{
city = (String)cities.get(i);
System.out.println(city);

Again, this fragment contains a for loop, but now the termination condition uses the size ()
method, and the elements in the Vector are accessed using the elementAt () method.
In the final fragment the aggregate is implemented using a linked data structure:

S2.1 The lterator Pattern 31

Node current;
String city;

current = first;

while (current !'= null)

{
city = (String)current.value;
System.out.println(city);
current = current.next;

Now it is more convenient to use a while loop that repeatedly assigns current.next to
current, the termination condition involves a null pointer, uses the size () method, and the
elements in the Node are accessed using the . operator.

Is this really a big problem? Yes, when you realize that an application might loop over
the same aggregate object in many different classes and methods. This makes it very difficult
to change the aggregate object since it involves changing every loop in a way that can not be
done with a global search and replace.

The intent of the iterator pattern is to access the elements of an aggregate object while
hiding the internal structure of the aggregate. The Vector class and the Hashtable class make
use of the iterator pattern for just this reason. Both have elements() methods that return
an Enumeration.

SYAWA Operations

An iterator must be able to:
1. Reset its “pointer” (or cursor) to the first element.
2. Determine if there are any more elements in the sequence.
3. Move its “pointer” to the next element.

4. Retrieve the “current” element.

This is illustrated in Figure S2.1 on the following page.

SYAME An Example

The following example involves two classes that manage a collection of names. Both include
read () methods that read the names from a file:

32 Supplement S2 Design Patterns

r i

e:E]
_____ , Iterator T
! e:E | +resetCursor()
Aggregate” — "4 +cursorToNext()
+createlterator() o +hasMoreElements()
* |+getElementAtCursor() : E

Figure S2.1 The Iterator Pattern

public void read(String fn)

{
BufferedReader in;
String line;
try
{
in = new BufferedReader(
new FileReader(fn));
while ((line = in.readLine()) !'= null)
{
names.add(line);
}
in.close();
}
catch (IOException ioe)
{
System.err.println("Problem opening file: "+fn);
System.exit(1);
}
}

The NameList class uses a Vector to manage the names, as follows:

import java.io.*;
import java.util.*;

public class NamelList
{

private Vector<String> names;

S2.1 The lterator Pattern 33

public NameList()
{
names = new Vector<String>();

}

public Enumeration<String> elements()
{
return names.elements();

}

On the other hand, the NameDatabase class uses a Hashtable for the same purpose:

import java.io.*;
import java.util.*;

public class NameDatabase

{

private Hashtable<String, String> names;

public NameDatabase ()
{

names = new Hashtable<String, String>();

}

public void add(String name)
{
names.put (name, name);

}

public Enumeration<String> elements()
{
return names.elements();

}

34 Supplement S2 Design Patterns

However, since both use the iterator pattern, an application can use both in the same way
(except for their declaration and construction). For example, the following fragment uses the
NameList:

// To use a NameList
//

NameList names;

names = new NameList();

// Nothing else has to change

//
Enumeration<String> iterator;
String name;

names.read("people.txt");
iterator = names.elements();

while (iterator.hasMoreElements())
{
name = iterator.nextElement();
System.out.println(name) ;

while the following fragment uses the NameDatabase:

// To use a NameDatabase
//

NameDatabase names;

names = new NameDatabase();

S2.1 The lterator Pattern

35

// Nothing else has to change

//
Enumeration<String> iterator;
String name;

names.read("people.txt");
iterator = names.elements();

while (iterator.hasMoreElements())
{
name = iterator.nextElement();
System.out.println(name) ;

object names.

SYMWN Other Benefits

It is important to note that, since the Iterator keeps track of where it is at any point in time,

several objects can be “looping” over the elements in the aggregate at the same time.
For example, the NamePrinter class below prints elements in an Enumeration in a separate

thread of execution:

The only difference between the two is in the declaration and instantiation of the aggregate

{

import java.util.*;

public class NamePrinter implements Runnable
private static int instances = 0;
private Enumeration iterator;

private int id;
private Thread controlThread;

public NamePrinter (Enumeration names)

iterator = names;

36 Supplement S2 Design Patterns

instances++;
id = instances;

controlThread = new Thread(this);
controlThread.start();

public void run()

{
int delay;
Random random;
String name;
random = new Random(id*System.currentTimeMillis());
while (iterator.hasMoreElements())
{
name = (String)iterator.nextElement();
System.out.println(id+": "+name);
try
{
delay = random.nextInt(100);
controlThread.sleep(delay) ;
}
catch (InterruptedException ie)
{
// Ignore
}
}
}

The application below then creates several NamePrinter objects for the Enumeration. Without
any “communication” between them, the NamePrinter objects will not print any duplicates.

import java.util.*;

public class Driver2

{

public static void main(String[] args)

{

S2.1 The lterator Pattern 37

Enumeration iterator;
NameList names;
NamePrinter npl, np2, np3;

names = new NameList();
names.read("people.txt");
iterator = names.elements();

npl = new NamePrinter (iterator);
np2 = new NamePrinter (iterator);
np3 = new NamePrinter(iterator);

It is also important to note that the iterator pattern makes it possible to handle a “filtered”
list (e.g., names starting with the letter A’ in exactly the same way that the “unfiltered”
version would be handled.

38 Supplement S2 Design Patterns

The Singleton Pattern

The singleton pattern is a creational pattern.

Sy \otivation

In some applications, it is important that there be exactly (or no more than) one instance
of a particular class. For example, in many windowing systems there is exactly one event
queue. As another example, in many word processors there is only one menu bar for all of the
documents that are being edited.

Unfortunately, most “traditional” constructors do not provide any assurances about the
number of instances that can be created. Hence, the purpose of the singleton pattern is to
ensure that a class only has one instance and to provide a point of access to it.

Sy Operations

A Singleton must be able to create an instance of itself if one does not exist, or return the
existing instance if it does.

SYARE Implementation

A good way to implement the singleton pattern is illustrated in Figure S2.2 on the next page.

The constructor is made private (or, if you need to allow for generalizations, protected)
so that it is not visible. The static variable exists is used to keep track of whether the
class has been instantiated. If exists is true then the static variable instance contains the
existing instance (or a pointer to it). Other classes obtain access to the single instance using
the public, static createInstance() method. It returns the existing instance or creates one
as appropriate.

SYWX:M An Example

As an example, consider a FileViewer that is an encapsulation of a window that displays the
contents of a text file. It uses the singleton pattern to stop the proliferation of windows.

The overall structure of the class is as follows (the details of the windowing code are not
important for this discussion and, hence, are omitted):

public class FileViewer

{

private static boolean exists = false;
private static FileViewer instance;

S2.2 The Singleton Pattern 39

Singleton
-exists : boolean
-instance : Singleton

-Singleton()
+createlnstance() : Singleton

createlnstance() uses the
constructor to construct an
instance if one doesn't exist (i.e. if
exists is false). Otherwise it
returns instance

Figure S2.2 The Singleton Pattern

private FileViewer ()

{

exists = true;

The createInstance() method can then be implemented as follows:

public static FileViewer createlnstance()

{
if (lexists) instance = new FileViewer();
return instance;

It is worth noting that, in Java, it is not necessary to have the exists attribute. Instead, one
can check to see whether instance is null.
The FileViewer class can then be used by a FileChooser as follows:

40 Supplement S2 Design Patterns

public void valueChanged(ListSelectionEvent lse)
{
FileViewer fv;
String fn;
fn = (String)list.getSelectedValue();
fv = FileViewer.createInstance();
fv.load(fn);
}

Again, the details of the GUI code do not matter. What’s important here is that the
FileChooser need not be concerned with whether each file will be in it’s own FileViewer
object or not.

RYWRN Thread Safety

Since this implementation includes “check then act” logic, problems can arise if the
createInstance () method might be called by multiple threads. Fortunately, it can be made
thread safe relatively easily, if necessary.

One way to make this implementation thread safe is to make the createInstance()
method synchronized. Another way is to use eager initialization (i.e., instantiate the attribute
named instance when it is declared). This is illustrated in the following fragment:

private static FileViewer instance = new FileViewer();

The createInstance() method can then be simplified to:

public static FileViewer createlnstance()
{
return instance;

3

S2.2 The Singleton Pattern 41

SYWAW Other Approaches

Some people recommend that the singleton pattern be implemented with a directory (or reg-
istry) of all Singleton instances.

Using this approach, each Singleton would need to be named, and retrieved from the
directory by name. Of course, since you would only want there to be one directory, it would
have to be a Singleton itself.

42 Supplement S2 Design Patterns

Producer
Product
+createProduct() : Product
~Constructor()
creates
: 1
h |
h |
1 1
h |
! :
Constructor() usuall createProduct() calls the
has package visibility Product Constructor()

Figure S2.3 The Factory-Method Pattern

The Factory-Method Pattern

The factory-method pattern is a creational pattern.

SYMCHE Motivation

The normal object construction process can be quite limiting. The factory-method pattern
attempts to overcome some of this limitations. For example:

e There may be a limit on the number of objects that can be created.

e An object may need to be configured after it is created. For example, consider a set of
three objects, each of which needs to contain a reference to the other two.

e A class may need to create an object that will reside on any of several machines.
e A class may need to create a proxy/surrogate for another object and not know it.

YR |mplementation

A good way to implement the factory-method pattern is illustrated in Figure S2.3.

The Product constructor has package/implementation/friend visibility so that it is only
visible to the Producer. Other classes obtain access to an instance of Product using the
public createProduct () method in the Producer class.

The createProduct() method may or may not be static. In most cases, only a single
Producer is needed, in which case the createProduct () method and all necessary state vari-
ables are mode static. In some cases, their can be multiple Producer objects, each of which
needs to maintain state information.

SYMEE Close Variants

Some Product objects are very “expensive” to create (e.g., network connections, complicated
look-up tables). In this case, the Producer can keep a “pool” of Product objects around, and
produce them when convenient.

S2.3 The Factory-Method Pattern

Product Producer
+reset() -productPool : Hashtable
~Constructor() +createProduct() : Product
~Destructor() creates |+destroyProduct()

: T
! 1
! I
! 1
! 1
! 1
! 1

t 1
resel() createProduct() removes
completely

Product objects from the pool
and destroyProduct() puts them
back in the pool [after calling
reset()]

clears the state

Figure S2.4 The Factory-Method Pattern with an Object Pool

43

Tt is also possible to “recycle” Product objects (i.e., return them to the “pool”). In this

case, the pattern can be implemented as in Figure S2.4.

SYMR:M An Example

The example that follows makes use of a simple DirectoryListing class that provides a
method for getting the contents of a directory/folder (that only actually checks the direc-

tory/folder if its contents have changed since the last time its contents were requested):

import java.io.*;
import java.util.*;

public class DirectorylListing

{
private File dir;
private Filel[] files;
private long lastTimeCheck;

DirectoryListing(String path) // package visibility

{
dir = new File(path);
lastTimeCheck = 0;
update();

}

public File[] getContents()
{

44 Supplement S2 Design Patterns

update();
return files;

private void update()

{
long lastModified;

lastModified = dir.lastModified();
if (lastTimeCheck != lastModified)
{
lastTimeCheck = lastModified;
files = dir.listFiles();
Arrays.sort(files);

A DirectoryListing object is expensive to create because it accesses the file system.
The DirectoryListingFactory uses a “pool” of DirectoryListing objects in order to
ensure that only one such object exists for any particular path:

import java.util.*;

public class DirectoryListingFactory

{
private Hashtable<String,DirectorylListing> pool;

public DirectoryListingFactory()

{
pool = new Hashtable<String,DirectoryListing>();

}

public DirectoryListing createDirectoryListing(String path)

{
DirectoryListing dl;

dl = pool.get(path);

if (d1 == null)

{
dl = new DirectoryListing(path);
pool.put(path, dl);

S2.3 The Factory-Method Pattern

return dl;

45

The following simple driver illustrates the use of these two classes:

import java.io.x;

public class Driver

{

public static void main(String[] args) throws Exception

{

BufferedReader in;
DirectoryListing dir;
DirectoryListingFactory factory;
String path;

factory = new DirectoryListingFactory();

in = new BufferedReader(new InputStreamReader(System.in));
System.out.print ("Enter a path: ");
while ((path = in.readLine()) != null)

{
dir = factory.createDirectoryListing(path);
print(dir);
System.out.print ("Enter a path: ");

}

public static void print(DirectoryListing dir)
{

Filel[] files;

int i;

files = dir.getContents();

for (i=0; i < files.length; i++)
{

System.out.println(files[i] .getName());
}

46 Supplement S2 Design Patterns

System.out.println("\n\n");

YA Related Patterns

The abstract factory pattern should be used when the concrete class of the object being created
is not known by the client. For example, the client may need to create a GUI component /widget
and may not know the “look-and-feel” of the GUI.

S2.4 The Observer Pattern 47

<<Interface>>
Subject <<Interface>>

+addObserver() ! Observer
+removeObserver() . +handleNotification(state : SubjectState)

+notifyObservers()

Figure S2.5 The Observer Pattern

The Observer Pattern

The observer pattern is a behavioral pattern.

Sy \otivation

Obviously, objects often need to communicate with each other. Unfortunately, traditional
message passing techniques tend to couple objects too tightly in many situations.

For example, consider a spreadsheet application. One might, at any point in time, plot
some of the data using a bar chart, a pie chart, or both. How should the data object and the
graphical objects communicate? One way is to have the charts periodically poll the data to
see if its has changed. This has obvious problems. Another way is to have the data object
send a message to the chart objects whenever the data changes. However, the number of chart
objects is not known in advance. In addition, each chart object might use information from
more than one data object.

As another example, consider a security (e.g., stocks, futures, options) trading application
in which there is a TickReader that reads “tick by tick” pricing information (e.g., from the
Internet) and sends each Tick to a TickWriter that saves the information in a file and to a
TickerTape that displays the information on a screen.

One possible design involves thinking of the TickReader as actively adding ticks to the
TickWriter and TickerTape. Unfortunately, having the TickReader call the TickWriter
and TickerTape reduces the reusability of the TickReader. In particular, every TickReader
must have an associated TickWriter and TickerTape.

With that in mind, a better approach involves thinking of the TickWriter and TickerTape
as passively listening for “ticks”. Then, a TickReader need only have a list of (zero or more)
TickListener objects that it will inform.

The observer pattern uses exactly this approach. It does so by defining a one-to-many
dependency between objects so that when one object changes state, all of its dependents are
notified.

SYXWA Structure

The participants in the observer pattern are the Subject and the Observer. The Subject
has a list of Observer objects, and provides a way for them to add and remove themselves.
The Observer provides a notification method. This is illustrated Figure S2.5.

48 Supplement S2 Design Patterns

<<Interface>>
Subject <<Interface>>
+addObserver() ! Obse.r?/e r
+removeObserver() +handleNotification()
+notifyObservers() 0.. A
1
A 1
! 1
! 1
! 1
! 1
C j ConcreteObserver
+getState() : ConcreteSubjectState +handleNotification()

handleNotification() calls getState() H

Figure S2.6 Another Version of the Observer Pattern

YA E Implementation Details

There are at least two different ways for the Subject to inform the Observer of the specific
state changes that have occurred. In the first approach, the state changes are arguments of
the handleNotification() method. In the second approach, the class that implements the
Subject interface has a getState() method that the class that implements the Observer
interface uses. This is illustrated in Figure S2.6.

It is also important to note that the Observer may have more than one Subject. In such
situations, the Observer needs to be told which Subject is doing the notifying. In Java, this is
accomplished by having several interfaces that generalize Observer. Alternatively, a reference
to the Subject could be an argument of handleNotification().

KYX:W:8 Other Terminology

An Observer is sometimes referred to as a “listener”, which more accurately portrays the
passive nature of the Observer. This kind of interaction is also sometimes referred to as
publish-subscribe. The observer /listener subscribes to the subject, and the subject publishes
updates.

YR BW An Example

This section contains an example that illustrates both the observer pattern and important
issues related to coupling and cohesiveness. The application considered in this section is a
SillyTextProcessor that reads lines of text from the console and:

e Counts the number of words that start with an uppercase letter;
e Save the lines to a file; and
e Shows the progress (e.g., the number of lines processed).

One obvious, though bad, design for such an application is to put all of the functionality
in a single class as illustrated in Figure S2.7 on the following page.

S2.4 The Observer Pattern 49

SillyTextProcessor

+readLine()
+archive()
+countUCWords()
+showProgress()

Figure S2.7 A Design for the SillyTextProcessor that is Not Cohesive

This design leads to a loop in which all of the lines are read and processed as follows:

% // Prompt the user

System.out.println("Enter " +maxLines +
" lines of text ("Z to end):\n");

// Read from the console

lines = 0;

while ((line = in.readLine()) != null)
{

// Process each line

The progress indicator would involve code (inside the loop) like the following:

% // Indicate the progress

++lines;
bar.setValue(lines);

The uppercase word counter would involve code (inside the loop) like the following:

% // Count the number of words that start with

// uppercase characters (using Java’s
// definition of uppercase)

tokenizer = new StringTokenizer(line);
ucCount = 0;

®

50 Supplement S2 Design Patterns

calls

SillyTextProcessor

+readLine()

calls

calls

LineArchiver

UCWordCounter

ProgressWindow

Figure S2.8 A Design of the SillyTextProcessor that is Tightly Coupled

{

}

letter =

while (tokenizer.hasMoreTokens())

word = tokenizer.nextToken();
word.substring(0,1);

letterUC = letter.toUpperCase();

if (letter.equals(letterUC)) ++ucCount;

System.out.println("Start with uppercase: "+ucCount);

Finally, the line archiver would involve code (inside the loop) like the following;:

// Save the text in a file
out.println(line);

This is a classic example of a bad design. The SillyTextProcessor class is not cohesive and,

as a result, is not reusable.

A better approach is to have one class for each of the primary requirements. This leads
to LineReader, UCWordCounter, and LineArchiver classes all of which are used by the
SillyTextProcessor as illustrated in Figure S2.8. The obvious advantage of this design

is that each of the classes can, potentially, be used elsewhere.

Without worrying about the details of the “helper” classes, the SillyTextProcessor class

will now implemented something like the following:

// Initializat

ion

in = new BufferedReader(
new InputStreamReader(System.in));
bar = new ProgressWindow(maxLines);

S2.4 The Observer Pattern 51

archiver = new LineArchiver();

// Prompt the user
System.out.println("Enter " +maxLines +
" lines of text ("Z to end):\n");

// Read from the console
while ((line = in.readLine()) != null)
{
// Indicate the progress
bar.indicateProgress();

// Count the number of words that start with
// uppercase characters
UCWordCounter.count (line) ;

// Save the text in a file
archiver.save(line);

}

archiver.close();

The problem with this design is that the SillyTextProcessor is too tightly coupled to the
other classes. Specifically, the SillyTextProcessor communicates with each of the “helper”
classes in a unique way. As a result, there is no easy way to add or remove “helper” classes.

This problem can be corrected using the observer pattern. To do so, one needs to cre-
ate LineSubject and LineObserver interfaces, and have the LineReader class implement
the LineSubject interface, and have the ProgressBar, UCWordCounter, and LineArchiver
classes implement the LineObserver interface. This is illustrated in Figure S2.9 on the
following page

The LineObserver interface should look something like the following:

public interface Line(Observer

{

public void handleLine(LineSubject source);

and the LineSubject interface should look something like the following:

public interface LineSubject

{

52 Supplement S2 Design Patterns

public

public

public

public

<<Interface>>
LineSubject <<Interface>>
+addObserver(obs : LineObserver) 1 LineObserver
:2 i’gg/‘g‘g‘;ﬁ;‘; g{’) 0 0.* |+handleLine(source : LineSubject)
+getLine() A A JAN
1 1 1
A I I I
1 ! i X
1 ! ' .
1 ! ! ,
1 ! ! !
LineReader LineArchiver UCWordCounter ProgressWindow

SillyTextProcessor

Figure S2.9 A Good Design for the SillyTextProcessor

void addObserver (LineObserver observer);

String getLine();

void notifyObservers();

void removeObserver (LineObserver observer) ;

The LineReader class must maintain a collection of LineObserver objects. This example
uses a List (in fact, a LinkedList) ! as follows:

private List<LineObserver>

observers;

The addObserver () method can then be implemented as follows:

public void addObserver(LineObserver observer)

Lf the collection of observers might be modified in one thread and notified in another then you could,
instead, use a CopyOnWriteArrayList.

S2.4 The Observer Pattern

observers.add(observer) ;

53

and the notifyObservers() method can be implemented as follows:

public void notifyObservers()

{
Iterator<LineObserver> i;
LineObserver observer;

i = observers.iterator();
while (i.hasNext())
{
observer = i.next();
observer.handleLine(this);

It can then use the various LineObserver classes in a very “generic” way:

public void start() throws IOException
{
// Read from the console and alert listeners
while ((line = in.readLine()) != null)
{
notifyObservers();
}
}

This reduces the coupling dramatically. The LineReader now need only be concerned with

“generic” LineObserver objects, not with the specifics of the various “helpers”.

The SillyTextProcessor class now has to construct the subject and each of the observers,

and associate the observers with the subject:

// Initialization
reader = new LineReader(System.in, maxLines);
bar = new ProgressWindow(maxLines) ;

54 Supplement S2 Design Patterns

archiver = new LineArchiver();
new UCWordCounter();

counter

reader.add0bserver (bar) ;
reader.addObserver (archiver) ;
reader.addObserver (counter) ;

// Prompt the user
System.out.println("Enter " +maxLines +

" lines of text (°Z to end):\n");

reader.start();

The other classes do not change much though they must now implement the LineObserver
interface.

S2.5 The Composite Pattern 55

<<Interface>> .
Component child
+operation()

1 1

1 1

]]

1 1

]]

1 1

]] t
. paren

I._eaf Composite
+operation() +add(c : Component)

+remove(c : Component) <>_
+getChild(i : int)

Delegates operation to all children

Figure S2.10 The Composite Pattern

The Composite Pattern

The composite pattern is a structural pattern.

SYARE Motivation

In many applications, you want to be able to ignore differences between individual objects and
compositions of objects. That is, you want to be able to treat all objects (whether composite
or not) uniformly.

For example, in many drawing programs you can group several primitive shapes (e.g.,
lines, rectangles, ovals) together and then perform the same operations on the group as on
the primitives (e.g., change the color, re-size) In the “real world”, the composite pattern also
arises frequently. For example, consider railroads. The components are locomotives, boxcars,
flatcars, etc... The containers are consists (a group of locomotives), car sets (a group of cars),
and trains (a group of consists, locomotives, and car sets.

YR WA |mplementation

The composite pattern involves three class/interfaces, Component, Composite, and Leaf, as
illustrated in Figure S2.10. A Composite object can contain many Component objects, and
both the Leaf class and the Composite class implement the Component interface. Thus, a
Composite can contain both Leaf objects and other Composite objects.

Each class that implements the Component interface must contain a operation() method.
The Leaf class contains a “meaningful” implementation of this method. The Composite

56 Supplement S2 Design Patterns

<<Interface>>
Distribution
+sendMessage(msg : String)

. /(]A AN

I
I
I
| \
I
1

\
~

EmailAddress IMName PagerNumber FaxNumber DistributionList
+add(d : Distribution) C
+remove(d : Distribution)

Figure S2.11 An Example of the Composite Pattern

object, on the other hand, simply operation() calls to its children. (Note that, though
Figure S2.10 on the preceding page only contains on operation() method, in practice, there
are often multiple “operations” in the Component interface.)

SYRME An Example

A good example of the composite pattern is the Message Distribution System illustrated in Fig-
ure S2.11. In this example there are several “leaves” — EmailAddress, IMName, PagerNumber,
and FaxNumber. They all have a sendMessage method. A DistributionList can contain any
and all of these “leaves” as well as other DistributionList objects.

The Distribution interface is, of course, quite simple:

public interface Distribution
{
public void sendMessage(String msg) ;

}

The following implementation of the DistributionList class uses a Hashtable to manage
its “children”:

import java.util.*;

public class DistributionList implements Distribution

{

private Hashtable<Distribution,Distribution> aggregate;

public DistributionList()
{

aggregate = new Hashtable<Distribution,Distribution>();

S2.5 The Composite Pattern

public void add(Distribution d)

{
aggregate.put(d, d);
}
public void remove(Distribution d)
{
aggregate.remove(d) ;
}

57

It’s sendMessage () method delegates to its children using the Iterator pattern (see Section S2.1

on page 30) as follows:

public void sendMessage(String msg)

{
Distribution d;
Enumeration<Distribution> iterator;

// Use the Iterator Pattern to loop through the
// Distribution objects in the aggregate

iterator = aggregate.elements();
while (iterator.hasMoreElements())
{

d = iterator.nextElement();

// Delegate to the Destination
d.sendMessage (msg) ;

The power of the composite pattern can be illustrated with the following fragment:

DistributionList cs, math, spam;
EmailAddress dean;

58 Supplement S2 Design Patterns

new DistributionList();
new EmailAddress("Tex Avery",
"tex@hollywood.edu") ;

spam
dean

cs = new DistributionList();

cs.add(new EmailAddress("Gilligan",
"littlebuddy@island.edu"));

cs.add(new EmailAddress("The Skipper",
"skipper@island.edu"));

cs.add(new EmailAddress("Mr. and Mrs. Howell",
"magoo@island.edu"));

math = new DistributionList();

math.add(new EmailAddress("Fred Flintstone",
"bedrock.edu"));

math.add(new EmailAddress("Barney Rubble",
"bedrock.edu"));

math.add(new EmailAddress("Stony Curtis",
"hollyrock.edu"));

spam.add(cs);
spam.add (math) ;
spam.add(dean) ;

spam.sendMessage ("Buy my book!");

Note that the Distribution list named spam contains both an EmailAddress object and other
DistributionList objects.

S2.6 The Decorator Pattern 59

<<Interface>>

Component

+operation()

JAN JAN

+Decorator(decorated : Component)
+operation()

ConcreteComponent <<abstract>>
D
decorated : Component operation() is delegated to decorated KT

ConcreteDecorator
-additionalAttribute
+additionalBehavior()
+operation()

operation() is delegated to parent before/after
additionalBehavior()

Figure S2.12 The Decorator Pattern

The Decorator Pattern

The decorator pattern is a behavioral pattern.

SYARE Motivation

When you specializes an existing class with a class that includes additional methods you are,
in effect, adding capabilities to an entire class of objects. There are times, however, when you
would like to add capabilities to an indiviual object (at run-time).

For example, consider an application that needs to present output on the console and uses
a Printer object to do so. At any given time, the application might want to add capabilities
to the Printer object so that it can, for example, wrap at word boundaries or highlight certain
words.

Obviously, one could have WrappingPrinter and HighlightingPrinter classes that
specializes the Printer class and provide these capabilitites (and the ability to disable them).
However, this approach is fairly inflexible since one can imagine various kinds of capabilties
that one might want to add, in various combinations (e.g., highlighting and word-wrapping,
just highlighting, just word-wrapping).

The decorator pattern uses delegation to add capabilities to individual objects dynamically.

SYAWA Structure

The participants in the decorator pattern are the Component interface, the ConcreteComponent
class, the Decorator class, and the ConcreteDecorator class. The Component interface defines
the common set of capabilities, and the ConcreteComponent class provides those capabilities.
The Decorator class provides the delegation mechanism and the ConcreteDecorator provides
the additional capabilities. This is illustrated Figure S2.12.

60 Supplement S2 Design Patterns

Initiator Responder

I I
| |
: 1: Component :

2: Component | DecoratedComponent

I
|
|
DI:IQ_—l 4: additionalBehavior

~

3: operation

~

|

| NS
! operation is
delegated to
Component before
or after
additionalBehavior

Figure S2.13 A Generic Application of the Decorator Pattern

SYAE A Generic Application

One particularly important type of application of the decorator pattern is illustrated Fig-
ure S2.13. In this application, an Initiator object passes an object that implements the
Component interface to a Responder. The Responder decorates the Component (i.e., con-
structs a DecoratedComponent object from the Component object) and instructs it to perform
operation().

SYHAX:M An Example

Many examples of the decorator pattern involve Graphical User Interface (GUI) widgets. While
such examples are instructive, they tend to make people think that the decorator pattern is
only used in GUIs, and this is far from the truth.

Hence, this section contains an example that illustrates the use of the decorator pattern
in a non-GUI setting. In particular, this section contains an example that is very similar to
the Printer example discussed above. The overall structure of this example is illustrated
Figure S2.14 on the next page.

The Printer interface is quite simple:

public interface Printer

{
public abstract void print(String text);

}

<<Interface>>
Printer
+print(text : String)

JA JA

S2.6 The Decorator Pattern

ConsolePrinter <<abstract>>
PrinterDecorator

-decorated : Printer

|

?

UppercasePrinter

WrappingPrinter

+print(text : String)

+print(text : String)

print() modifies the String and then delegates to decorated.print() Iﬁ

Figure S2.14 An Example of the Decorator Pattern

The ConsolePrinter class, as its name implies, simply prints to the console:

61

public class ConsolePrinter implements Printer

{
public void print(String text)
{
System.out.print (text);
}
}

The PrinterDecorator class “manages” the Printer object for all concrete decorators:

public abstract class PrinterDecorator implements Printer

{

protected Printer decorated;

public PrinterDecorator(Printer decorated)

{

62 Supplement S2 Design Patterns

this.decorated = decorated;

public abstract void print(String text);

The UppercasePrinter, which extends PrinterDecorator, simply converts the text to up-
percase before delegating:

public class UppercasePrinter extends PrinterDecorator
{
public UppercasePrinter (Printer decorated)
{
super (decorated) ;
}
public void print(String text)
{
decorated.print (text.toUpperCase());
}
}

The WrappingPrinter, which also extends PrinterDecorator, simply ensures that the text
will wrap at word boundaries. It does this by tokenizing the text and delegating on a word-
by-word basis:

import java.util.*;

public class WrappingPrinter extends PrinterDecorator
{
protected int width;

public WrappingPrinter (Printer decorated, int width)
{

super (decorated) ;

this.width = width;

S2.6 The Decorator Pattern

public void print(String text)

{
int required, used;
String token;
StringTokenizer st;
st = new StringTokenizer (text);
used = 0;
while (st.hasMoreTokens())
{
token = st.nextToken();
required = token.length();
if ((required + used + 1) > width)
{
decorated.print ("\n") ;
decorated.print (token) ;
used = required + 1;
}
else
{
if (used != 0)
{
decorated.print(" ");
++used;
}
decorated.print (token) ;
used += required;
}
}
}

63

The followin Driver class illustrates the flexibility of this design:

public class Driver
{
public static void main(String[] args)
{
Printer printer;
String text;

64 Supplement S2 Design Patterns

text = "This is the text that we will use " +
"to demonstrate the capabilities " +
"of different Printer objects.";

printer = new ConsolePrinter();
printer.print(text);
System.out.print ("\n\n");

printer = new UppercasePrinter (new ConsolePrinter());
printer.print(text);

System.out.print ("\n\n");

printer = new WrappingPrinter(new ConsolePrinter(), 20);
printer.print(text);

System.out.print ("\n\n");

printer = new WrappingPrinter(
new UppercasePrinter(
new ConsolePrinter()), 20);
printer.print(text);

SYARE Implementation Details

In some situations, one wants to decorate an object that does not implement an explicit
interface. In such cases, it is common for the Decorator to specialize the class to be decorated.

For example, in Java one might want to decorate a Graphics2D so that it uses a coordinate
system that has its origing at the lower left (rather than the upper left). One can accomplish
this with a CartesianGraphics class that extends the Graphics2D class (to achieve the nec-
essary “is a” relationship) but delegates to its member Graphics2D object. This is illustrated
in Figure S52.15 on the following page and is precisely the approached used in Java by various
I/O streams.

S2.7 The Strategy Pattern 65

Graphics2D
+draw(s : Shape)

CartesianGraphics
-g : Graphics2D

+CartesianGraphics(g : Graphics2D)

+draw(s : Shape) ;IegatesTo

Figure S2.15 Decorating a Graphics2D Object in Java

The Strategy Pattern

The strategy pattern is a behavioral pattern.

YA \otivation

In most situations there are many ways to achieve the same result. In many of these situations,
the software designer chooses one (hopefully the best) and implements it. In some situations,
one wants to have the flexibility to use more than one.

For example, in numerical optimization, multidimensional search (e.g., the cyclic coordi-
nates method) often involves the repeated application of a one-dimensional search algorithm
(e.g., the golden section algorithm, the Fibonacci algorithm). One would like to be able to use
different one-dimensional search algorithms at different times.

As another example, in a word processing application, a document formatter might use a
paragraph formatter. However, at different times, one might want to use different paragraph
formatters (e.g., flush-left-ragged-right, flush-left-and-right, etc...).

The strategy pattern defines a family of interchangeable algorithms for accomplishing the
same objective.

YA The Pattern

The strategy pattern involves a Strategy interface, one or more concrete implementations of
that interface, and a Context object that uses a Strategy to perform a particular task. This
is illustrated in Figure S2.16 on the next page.

Either the Context object or a third party, constructs the concrete Strategy objects
and instructs the Context object to use one or another. The Context object then uses the
operation() method of the Strategy object to perform a particular task.

SYAMRE An Example

As an example, consider a Posterizer that converts a color image to a black and white (not
grayscale) image. For each pixel it determines whether the color of that pixel is “closer to”

66 Supplement S2 Design Patterns

<<Interface>>
Context | delegatesTo Strategy
+operation()
1 1
1 1
1 1
1 1
ConcreteStrategyA ConcreteStrategyB

Figure S2.16 The Strategy Pattern

Posterizer delegatesTo <<Interface>>
+setMetric(m : Metric) Metric
+toBlackAndWhite(image : Bufferedimage) +distance(x : double [], y : double []) : double
' JAN JAN JAN AN

1
1
1
toBlackAndWhite() usegl :

the Metric to determine
whether a pixel should be
converted to black or white

EuclideanMetric PostOfficeMetric

1
1
1
1
1
1
1
1
1
1
|

S

RectangularMetric upremumMetric

Figure S2.17 An Example of The Strategy Pattern

black or white. If it is “closer to” black, it makes the pixel black. If, on the other hand, it is
“closer to” white, it makes the pixel white.

The Posterizer needs to determine the distances between the color of the pixel and the
colors black and white. However, there are many different ways to calculate the distance
between two colors, since colors are represented as 4-dimensional points, one dimension for
each of red, green, blue and «. So that a Posterizer need not be tied to a particular notion of
distance, the strategy pattern is used. The Metric interface plays the role of the strategy, and
the EuclideanMetric, PostOfficeMetric, RectilinearMetric and SupremumMetric classes
play the role of the concrete strategies. This is illustrated in Figure S2.17.

The Metric interface is straightforward.

package math;

public interface Metric
{

public abstract double distance(double[] x, doublel[] y);
}

This interface is then implemented by the EuclideanMetric, PostOfficeMetric,
RectilinearMetric and SupremumMetric classes, two of which are included here.

S2.7 The Strategy Pattern

67

package math;

public class EuclideanMetric
implements Metric
{
public double distance(double[] x, double[] y)
{
double result;
int n;

0.0;
Math.min(x.length, y.length);

result

n

for (int i=0; i<n; i++)
{

result += Math.pow(x[i]l-y[i], 2.0);
}

return Math.sqrt(result);

package math;

public class SupremumMetric
implements Metric
{
public double distance(double[] x, double[] y)
{
double result, term;
int n;
result = Math.abs(x[0]-y[0]);

n Math.min(x.length, y.length);

for (int i=1; i<m; i++)
{
term = Math.abs(x[i]-y[il);

if (term > result) result = term;

return result;

68 Supplement S2 Design Patterns

The Posterizer then uses a particular Metric when converting to black and white.

import java.awt.x;
import java.awt.image.*;

import math.x*;

public class Posterizer

{
private doublel[] X, ¥;
private Metric metric;

private static final int[] BLACK
private static final int[] WHITE

{ 0, 0, 0}
{255,255,255};

public Posterizer()

{

= new double[3];
new doublel[3];

»
|

~
I

private double distance(int[] a, int[] b)

{
double result;
for (int i=0; i<3; i++)
{
x[i] = alil;
y[i] = b[il;
}
result = Double.POSITIVE_INFINITY;
if (metric != null) result = metric.distance(x, y);
return result;
}

public void setMetric(Metric metric)

S2.7 The Strategy Pattern 69

this.metric = metric;

public void toBlackAndWhite(BufferedImage image)

{
ColorModel colorModel;
double blackDistance, whiteDistance;
int height, packedPixel, packedBlack, packedWhite, width;
int [] pixel;
pixel = new int[3];
height = image.getHeight();
width = image.getWidth();

colorModel = image.getColorModel();

packedBlack = colorModel.getDataElement (BLACK,O) ;
packedWhite colorModel.getDataElement (WHITE,O) ;

for (int x=0; x<width; x++)
{
for (int y=0; y<height; y++)
{
packedPixel = image.getRGB(x, y);
colorModel.getComponents (packedPixel, pixel, 0);

blackDistance = distance(pixel, BLACK);
whiteDistance distance(pixel, WHITE);

if (blackDistance < whiteDistance)
image.setRGB(x, y, 0x00000000) ;
else
image.setRGB(x, y, OxFFFFFFFF);

70 Supplement S2 Design Patterns

REFERENCES AND FURTHER READING [o s prssprppssppppprsprsppun

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and Angel, S. (1977) A
Pattern Language: Towns, Buildings, Construction Oxford University Press, New York, NY.

Brown, C.B. (1986) “Incomplete Design Paradigms” in Modelling Human Error in Structural Design
and Construction Nowak, A.S. (ed.), American Society of Civil Engineers, New York, NY.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995) Design Patterns:Elements of Reusable
Object-Oriented Software Addison-Wesley Publishing Company, Reading, MA.

Norton, M. (2003) Composing Software Design Patterns M.S Thesis, James Madison University.

Petroski, H. (1994) Design Paradigms Cambridge University Press, New York, NY.

