Sample Vector and Matrix Arithmetic Questions
- 
      Write out the 4x4 identity matrix.
      
 
- 
      Write out the 4x4 null matrix.
      
 
- 
      Evaluate each of the following:
        
- \(\left[ \begin{array}{r}5 \\ 2 \\ 8 \end{array}\right] + 
               \left[ \begin{array}{r}2 \\ -1 \\ 3 \end{array}\right]\)
 
- \(\left[ \begin{array}{r}5 \\ 2 \\ 8 \end{array}\right] \cdot
               \left[ \begin{array}{r}2 \\ 3 \\ -2 \end{array}\right]\)
 
- \(\left\Vert [3 \; 4 \; 8] \right\Vert\)
 
- \(\left\Vert \frac{[3 \; 4 \; 8]}{|| [3 \; 4 \; 8] ||} \right\Vert\)
 
- \(
	  \left[ \begin{array}{r r r}
          1 & 2 & 3 \\
          4 & 5 & 6 \\
          \end{array}\right]^{T}
	  \)
 
- \(
	  \left[ \begin{array}{r r r}
          1 & 2 & 3 \\
          4 & 5 & 6 \\
          \end{array}\right] +
	  \left[ \begin{array}{r r r}
          11 & 12 & 13 \\
          14 & 15 & 16 \\
          \end{array}\right]
          \)
 
- \(
	  \left[ \begin{array}{r r r}
          1 & 2 & 3 \\
          4 & 5 & 6 \\
          \end{array}\right]
	  \left[ \begin{array}{r}
          2 \\
          3 \\
          1
          \end{array}\right]
	  \)
 
- \(
	  \left[ \begin{array}{r r r}
          1 & 2 & 3 \\
          4 & 5 & 6 \\
          \end{array}\right]
	  \left[ \begin{array}{r r}
          3 & 1 \\
          7 & 5\\
          2 & 4
          \end{array}\right]
	  \)
 
- \(
	  \left[ \begin{array}{r r r}
          1 & 2 & 3 \\
          4 & 5 & 6 \\
          7 & 8 & 9 \\
          \end{array}\right]
	  \left[ \begin{array}{r r r}
          1 & 0 & 0 \\
          0 & 1 & 0 \\
          0 & 0 & 1 \\
          \end{array}\right]
          \)
 
- \(
	  \left|
	  \left[ \begin{array}{r r}
          5 & 3 \\
          7 & 9 \\
          \end{array}\right]
           \right|
          \)
 
 
- 
      Illustrate both ways of visualizing vector subtraction.
      That is, draw two points \(\bs{p}\) and \(\bs{q}\)
      and then draw the resulting point \(\bs{p}-\bs{q}\) and
      the translated direction vector \(\bs{p}-\bs{q}\).
      
 
- 
      Explain the process of normalizing a vector. What is the norm
      of a normalized vector?
      
 
- 
      How can you determine if two vectors are orthogonal? Are the vectors
      \([2 \; 2]\) and \([-5 \; 5]\) orthogonal?
      
 
- 
      Illustrate the set of convex combinations of two points,
      \(\bs{p}\) and \(\bs{q}\).
      
 
- 
      Given three matrices such that \(\bs{A} \bs{B} = \bs{A} \bs{C}\).
      Does it follow that \(\bs{B} = \bs{C}\)?
      
 
 
        Copyright
        2014