(1) | _____ |
Geodesy is the science (and art) of communicating geodetic information using abstract visual representations (i.e., maps). |
(2) | _____ |
A legend is an example of a geographic feature. |
(3) | _____ |
Azimuthal projections are all conformal. |
(4) | _____ |
Cylindrical projections use cylindrical coordinates. |
(5) | _____ |
Some map projections are both conformal and equal area. |
times
method in the following
CartesianPoint
class:
public class CartesianPoint { private double[] value; private static final int DIMENSION = 2; /** * Explicit Value Constructor * * @param x The value of the horizontal coordinates * @param y The value of the vertical coordinates */ public Point(double x, double y) { value = new double[DIMENSION]; value[0] = x; value[1] = y; } /** * Multiply this CartesianPoint by a scalar * * @param alpha The scalar * @return The result of the multiplication */ public CartesianPoint times(double alpha) { } }
Drafter
class with the
following two methods:
/** * Draw a straight (solid black) line segment from the pen's current Point * (i.e., the result of the last moveTo() or drawTo()) * to the given Point. This method leaves the pen at p * * @param p The end of the line segment */ public void drawTo(CartesianPoint p) { ... } /** * Lift the pen off of the paper and move it to * the given Point * * @param p The Point to move to */ public void moveTo(CartesianPoint p) { ... }
what would be drawn by the following sequence of method calls?
moveTo(new CartesianPoint(10.0, 10.0)); drawTo(new CartesianPoint(10.0, 50.0)); drawTo(new CartesianPoint(50.0, 50.0)); moveTo(new CartesianPoint(20.0, 20.0)); drawTo(new CartesianPoint(30.0, 20.0));
adjustFor()
methods in the
following RectangularHull class:
/** * The smallest rectangle containing a set of Point objects (represented * as two Point objects, one containing the minimal coordinates and * one containing the maximal coordinates). */ public class RectangularHull { private Point max, min; /** * Explicit Value Constructor */ public RectangularHull(Point min, Point max) { double[] v; int n; n = min.getDimension(); v = new double[n]; for (int i=0; i<n; i++) v[i] = min.getCoordinate(i); this.min = new Point(v); for (int i=0; i<n; i++) v[i] = max.getCoordinate(i); this.max = new Point(v); } /** * Adjust this RectangularHull (if necessary) * so that it includes the given Point * * @param p The new Point */ public void adjustFor(Point p) { } /** * Adjust this RectangularHull (if necessary) * so that it includes another RectangularHull * * @param other The other RectangularHull */ public void adjustFor(RectangularHull other) { } /** * Get the maximal Point (e.g., the upper right corner) * * @return The maximal point */ public Point getMax() { return max; } /** * Get the minimal Point (e.g., the lower left corner) * * @return The minimal point */ public Point getMin() { return min; } /** * Create a String representation of this RectangularHull * * @return The String */ public String toString() { return (min.toString()+"\t"+max.toString()); } }
MapProjection
that contains
all of the appropriate methods, properly documented.
MapProjection
interface, complete the following method (that is in a class
that extends the Drafter
class from above). You may
use of the classes above.
/** * Draws a piecewise linear curve defined by an * Enumeration of EarthPoint objects. This method * first projects all of the points, then scales * and translates them to fit on the screen (which has * a lower-left corner of 0,0 and an upper-right corner * of screenMax. * * @param points The collection of EarthPoint objects * @param proj The MapProjection to use * @param screenMax The upper-right corner of the screen */ public void draw(Enumeration points, MapProjection proj, Point screenMax) { {
Copyright 2007