
                             AcademiCS Application Framework
Specifications for the First Set of Milestones and Deliverables

The first set of milestones/deliverables is concerned only with the demonstration application called The
Big Pixel.

1. Glossary

Big Picture Element A rectangular set of cells.  A big picture element has an upper-left corner, a width and 
height (measured in cells), and a stroke and fill color.

Brush A brush is used to "paint" a big picture element.  At any point in time, it has a size and a 
color.  The brush is "controlled" by the mouse.

Cell A rectangular set of pixels (in the GUI).  Each cell is 1/100th of the usable area of the 
component that renders it (i.e., 1/10th of the width and 1/10th of the height).

Grid The outline of the cells in a picture.

Margin Unusable space around (on all four sides) of the cells.

Picture An ordered collection of big picture elements.

Usable Area The pixels in a component not including the margins.

2. Engineering Design
The relationships between the various classes that must be implemented for the first set of 
milestones/deliverables is illustrated in the UML class diagram (that is available as an SVG file). In addition to 
the specifications in that diagram, the classes/interfaces must comply with the following specifications.

2.1 The CellID Class
The CellID class is an encapsulation of the identifier for an entry in a table. It consists of a column "index" and
a row "index", each of which can be of any type.

In some applications, the row and column "indexes" will be integers, however, one can imagine many situations 
in which this will not be the case. For example, the column indexes could be months and the row indexes could 
be salespeople. As another example, the column indexes could be letter grades and the row indexes could be 
course names.

The four-parameter constructor must throw an InvalidCoordinateException if either the given row or 
column parameter are invalid. The two-parameter constructor must not throw an exception.

The setColumn() and setRow() method must not change the associated attribute if the parameter is null 
or invalid.

-1-



                             AcademiCS Application Framework
Specifications for the First Set of Milestones and Deliverables

The toString() method must return the column "index", followed by a comma, followed by the row "index".
In other words, it must return the column "index" and row "index" formatted using the format string "%s,%s".

2.2 The CellConverter Interface
A CellConverter has the ability to convert between the column,row "indexes" of a CellID and the x,y-
coordinates of a pixel.

fromPixels() converts from an x,y-coordinate measured in pixels to the column,row of a CellID.
It must throw an InvalidCoordinateException if the x,y-coordinate is not in any cell.

toPixels() converts from the column,row of a CellID to an x,y-coordinate measured in pixels.  Since a 
cell is larger than a pixel, the result is the Rectangle2D.Double that the cell occupies (with upper-left 
corner at x,y). It must throw an InvalidCoordinateException if the column or row of the CellID is 
invalid.

2.3 The ColorFactory Class
The ColorFactory class is a utility class that is used to construct Color objects from String 
representations (and vice versa).

CSV representations have a format of "%d,%d,%d".

Hex representations have a format of "#%02x%02x%02x". 

The three components must be in the closed interval [0,255] base-10.

When converting from either representation, if the components are out of range or missing an 
IllegalArgumentException must be thrown. In addition, when converting from Hex, an 
IllegalArgumentException must be thrown if the String does not begin with a "#".

2.4 The GridConverter Class
A GridConverter is a CellConverter for cells that have a CellID in which both the column "index" 
and the row "index" are Integer objects.

The explicit value constructor has four parameters. columns and rows contain the number of columns and 
rows in the grid, respectively; pixels contains the width and height of the entire grid (in pixels); and margin 
contains the number of pixels in the margin around the cells (on all four sides).

For example, consider a 5x5 GridConverter that is 500 pixels wide and 500 pixels high with no margin. Its 
toPixels() method must convert the CellID at 2,3  to a rectangle that has an upper left corner of 200,300 
and a width and height of 100. 

-2-



                             AcademiCS Application Framework
Specifications for the First Set of Milestones and Deliverables

2.5 The GridComponent Class
A GridComponent is a JComponent that renders a grid with column and row "indexes" that are both 
Integer objects.  It may or may not include column/row headers (containing the "indexes") and margins.

The default constructor must initialize the columns, rows, and margin to 10, 10, and 20, respectively.

The getMinimumSize() method must assume that cells are 10 pixels by 10 pixels. The 
getPreferredSize() method must assume that cells are 30 pixels by 30 pixels.

The paint() method must render the grid and the headers. It may use other private methods for these 
purposes. If they are to be rendered, it must render the column and row headers in the top and left margins. Each 
column label must be centered above the relevant column, just above the top grid line. Each row label must be 
centered just to the left of the relevant row and must be aligned flush right. 

Note that this method will need to use the toPixels() method in a GridConverter object but it must 
never pass it invalid parameters. Hence, it will never need to handle an InvalidCoordinateException 
so it must use an assertion to ensure that this is the case during testing. When constructing the 
GridConverter, it must use its current size (obtained using getSize()) as the Dimension.

The setGridColor(), setGridVisibility() and setHeaderVisibility() methods must call 
repaint() after they change the object’s state. 

-3-


