G/radient

Specifications:
WeightedAverageStrategy

In addition to the obvious specifications illustrated in the following UML class
diagram

=<|nterface>>
GradingStrategy

+calculatekey | String, grades | java.ull. Uist<Grade=) ;| Grade

iy

|
WeightedAverageStrategy
-shou kdignoreMissing : boolean

+Weigh tedAverageStrategy()
+\WeightedAverageStrategy (weights | Map< String, Doubla>)
+WeightedAverageStrategy (weights : Map<3tring, Double>, shouldlgnoreMissing : boolean)

the WeightedAverageStrategy class must satisfy the following specifications.

1.

2.

The calculate() method must not have any side effects. That is, it must not

change the List that it is passed or any of the values in the List.

You may assume that the calculate() method is passed a List that does not

contain any null elements. Note: This does not mean that the List does not

contain missing grades

You may assume that all of the weights are non-negative.

The calculate() method must handle null weights.

4.1.1f the weights Map is null then each Grade must be weighted equally.

4.2.1f the weight for a particular Grade is null then the weight for that Grade is
said to be unspecified and a value of 8.0 must be used.

. The calculate() method must calculate the weighted average of the List of

Grade objects it is passed.
5.1. It must account for missing values in one of two ways, depending on the
value of the shouldIgnoreMissing attribute.

5.1.1. If shouldIgnoreMissing is true then missing values should be ig-
nored. In other words, if there are 10 elements and 2 are missing, the
calculation should be performed as if there are only the 8 non-missing
elements.

5.1.2. If shouldIgnoreMissing is false then missing values should be
treated as 0.0.

5.2.If the List is null then the weighted average must be 0.0.
5.3.If the List is empty (i.e., has no elements after appropriately accounting for
missing values as described above) then the weighted average must be 0.0.
5.4.If the List is not null and not empty then the weighted average must be
calculated as described in the Glossary.
5.5.1f all of the weights are 0.0 (i.e., the denominator in the above expression is
0.0) then the weighted average must be 0.0.
6. The default constructor must construct a WeightedAverageStrategy object with
a null weights Map that ignores missing values.
7. The one-parameter constructor must construct a WeightedAverageStrategy ob-
ject that ignores missing values

An Example with No Weights that lllustrates the Handling of Missing
Values

Suppose there are no weights and the List contains Grade objects with the
following value attributes: 5.0, 8.0, null, 2.0, and null. If the
WeightedAverageStrategy is ignoring missing values, then the calculate()
method must return a LeafGrade object with a value attribute of:

(5.0+8.0+2.0)/3=150/3=5.0

On the other hand, if the WweightedAverageStrategy is not ignoring missing values,
then the calculate() method must return a LeafGrade object with a value
attribute of:

(50+80+00+20+0.0)/5=15.0/5=3.0

An Example with Weights

Suppose the List contains Grade objects with the following value attributes: 5.0,
8.0, 2.0, and the corresponding weights ate 30.0, 30.0, 40.0. Then the
calculate() method must return a LeafGrade object with a value attribute of:

(5.0-30.0 + 8.0-30.0 + 2.0-40.0)/ (30.0 + 30.0 + 40.0)
(150.0 + 240.0 + 80.0) /(0 + 30.0 + 40.0)
470.0/100.0 = 4.7

