
Specifications: DropFilter
In addition to the obvious specifications illustrated in the UML class diagram, the DropFilter 
class must satisfy the following specifications.

1. public methods must not have any side effects. That is, they must not change the 
parameters that they are passed in any way (e.g., the List that is passed to the apply() 
method must not be changed in any way) and they must not change attributes that are not 
“owned” (i.e., attributes that are aliases) in any way.

2. You may assume that the apply() method is passed a List that does not contain any 
null elements.

3. The default constructor must construct a DropFilter object that drops the lowest and 
highest element.

4. The apply() method must construct a new List that is a subset of the List it is passed.
4.1. If the apply() method is passed a List that has an inappropriate size then it must 

throw a SizeException.
4.1.1. If the apply() method is passed a null List then it must throw a 

SizeException.
4.1.2. If the apply() method is passed a List that contains fewer elements than are 

to be dropped then it must throw a SizeException.
4.1.3. If the apply() method is passed a List that contains the same number of 

elements as are to be dropped then it must throw a SizeException.
4.2. If the apply() method is passed a list that has an appropriate size then it must return 

a new List.
4.2.1. The elements of the new List must be aliases for (not copies of) the Grade 

objects in the List it is passed.
4.2.2. Because each Grade object in the List has a key that can be used to identify it,

the new List need not be in the same order as the List it is passed.
4.2.3. The elements in (and size) of the returned List must be based on the values of 

the parameters that were passed to the constructor when the object was 
constructed.
4.2.3.1. If shouldDropLowest was true then it must drop exactly one of

the elements with the lowest value in the original List.
4.2.3.2. If shouldDropHighest was true then it must drop exactly one 

of the elements with the highest value in the original List.
4.2.3.3. When dropping the highest and lowest, two elements must always

be dropped, even if the highest and lowest have the same value.
4.2.3.4. When determining the highest and/or lowest values it must 

account for missing (i.e., null) values as in the compareTo() method of
the Grade class (i.e., missing values have smaller magnitude than non-
missing values and one missing value has the same magnitude as 
another missing value).


