CS480 Linear Algebra Exercises

For this activity, your goal is to complete the exercises below, and to develop a Pythonbased answer key using numpy. After you complete each exercise by hand, update your Python script to print the key for that question.

1. Assuming that

$$
B=\left[\begin{array}{lll}
1 & 2 & -3 \\
3 & 4 & -1
\end{array}\right], A=\left[\begin{array}{rrr}
2 & -5 & 1 \\
1 & 4 & 5 \\
2 & -1 & 6
\end{array}\right], y=\left[\begin{array}{r}
2 \\
-4 \\
1
\end{array}\right], z=\left[\begin{array}{r}
-15 \\
-8 \\
-22
\end{array}\right]
$$

calculate each of the following:
(a) $B A$
(b) $A B^{T}$
(c) $A y$
(d) $y^{T} z$ (This is the inner product, or dot product, of y and z.)
(e) $y z^{T}$ (This is the outer product of y and z.)
2. Given that $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$, and $b=\left[\begin{array}{l}4 \\ 6\end{array}\right]$
(a) Find A^{-1}.

Check your answer by computing $A A^{-1}$.
(Hint: let $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and solve $A B=I$ for a, b, c and d by solving a set of four equations in four unknowns. You would learn better ways to accomplish this in a linear algebrea course, but this approach only requires high-school algebra.)
(b) Use A^{-1} to solve $A x=b$ for x.

Check your answer by computing $A x$.

