CS480 Gradient Descent Exercises

1. Consider the following, very simple, "neural network":

where the activation of the output unit is just the dot product between the input and the weight vector: $h(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}$
Assume that the current weights are $w_{0}=0, w_{1}=1, w_{2}=.5$ and we have the following set of examples D.train:

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & 2 \\
-2 & 5 \\
0 & 1
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
1 \\
6 \\
1
\end{array}\right]
$$

Where each row in \mathbf{X} represents a data point and each entry in \mathbf{y} represents the corresponding target value.

- What output will this network produce for $\mathbf{x}=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$?
- Calculate

$$
L(\mathbf{w})=\frac{1}{2} \sum_{\left(\mathbf{x}_{i}, y_{i}\right) \in D}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

for this data set.

- Can you find a set of weights that would result in less error?

2. Calculate the partial derivatives of $f(x, y)=\sqrt{x^{2}+y^{2}}$. Show your work.
3. Recall the least-squares error function for linear regression:

$$
L(\boldsymbol{w})=\frac{1}{2}\left(y-\boldsymbol{w}^{T} \boldsymbol{x}\right)^{2}
$$

(This is the error associated with a single training sample with input \boldsymbol{x} and target value y.)
This objective function encodes a belief that bigger errors are much worse than smaller errors: in particular, that the penalty for making a mistake should grow with the square of the magnitude of the mistake. That seems reasonable ${ }^{1}$, but it isn't the only possible error function. One problem with using a squared error function is that outliers can have a big impact on the result.
An alternative that is more robust to outliers is the absolute error (or L1 error):

$$
\begin{aligned}
L(\boldsymbol{w})= & \left|y-\boldsymbol{w}^{T} \boldsymbol{x}\right| \\
& \left|y-\left(w_{0} x_{0}+\ldots+w_{i} x_{i}+\ldots+w_{n} x_{n}\right)\right|
\end{aligned}
$$

Your goal in this exercise is to develop a gradient-descent learning rule for this new objective function. (It will be helpful to know that $\frac{d}{d x}|u|=\frac{u}{|u|} \times \frac{d}{d x} u$)
Your final rule should have the form:

$$
w_{i} \leftarrow w_{i}-\eta ? ? ?
$$

[^0]4. Perform one round of gradient descent updates using the data set in question 1) and $\eta=.01$. Recall that the learning rule for our sum-squared error term is:
$$
\mathbf{w} \leftarrow \mathbf{w}+\eta \sum_{\left(\mathbf{x}_{i}, y_{i}\right) \in D}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}
$$

Recalculate the the error with the new weights to confirm it went down.

[^0]: ${ }^{1}$ In fact, there are good statistical reasons for using this error function, particularly if the noise in the data is normally distributed.

