

Convolutional Neural Networks

Nathan Sprague

Human Visual System

Urbanski, Marika, Olivier A. Coubard, and Clémence Bourlon. "Visualizing the blind brain: brain imaging of visual field
defects from early recovery to rehabilitation techniques." Neurovision: Neural bases of binocular vision and coordination
and their implications in visual training programs (2014).

Convolutional Neural
Networks

● Convolutional neural networks use the same trick
of learning layers of localized features…

● CNN’s were actually being used by Yann Lecun at
Bell Labs around 1990

Convolutions

Grayscale Image
1 convolutional filter

http://upload.wikimedia.org/wikipedia/commons/4/4f/3D_Convolution_Animation.gif
By Michael Plotke [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

Convolutions

Grayscale Image
1 convolutional filter

Color Image
5 convolutional filters

http://upload.wikimedia.org/wikipedia/commons/4/4f/3D_Convolution_Animation.gif
By Michael Plotke [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

http://cs231n.github.io/convolutional-networks/
The MIT License (MIT)
Copyright (c) 2015 Andrej Karpathy

Pooling Layers
● Pooling layers down-sample the filter outputs to

– Reduce dimensionality and computational requirements
– Increase the spatial extent of subsequent filters

http://cs231n.github.io/convolutional-networks/
The MIT License (MIT)
Copyright (c) 2015 Andrej Karpathy

Complete Network
● A “traditional” CNN is composed of convolutional

layers, each followed by non-linearities, followed by
pooling layers, with one or more dense (non-
convolutional) layer at the end:

Complete Network (in PyTorch)

 model = nn.Sequential(

 nn.Conv2d(3, 5, 3, padding='same'),
 nn.ReLU(),

 nn.Conv2d(5, 5, 3, padding='same'),
 nn.ReLU(),

 nn.MaxPool2d(2, 2),

 nn.Conv2d(5, 8, 3, padding='same'),
 nn.ReLU(),

 nn.Conv2d(8, 8, 3, padding='same'),
 nn.ReLU(),

 nn.Flatten(),
 nn.Linear(16 * 16 * 8, 128),
 nn.ReLU(),

 nn.Linear(128, 10)
)

Channels in Channels out Convolution size

Complete Network (alternate version)

class ConvNet(nn.Module):

 def __init__(self):
 super().__init__()
 self.relu = nn.ReLU()
 self.conv1 = nn.Conv2d(3, 5, 3, padding='same')
 self.conv2 = nn.Conv2d(5, 5, 3, padding='same')
 self.pool = nn.MaxPool2d(2, 2)
 self.conv3 = nn.Conv2d(5, 8, 3, padding='same')
 self.conv4 = nn.Conv2d(8, 8, 3, padding='same')
 self.flatten = nn.Flatten()
 self.fc = nn.Linear(16 * 16 * 8, 128)
 self.out = nn.Linear(128, 10)

 def forward(self, x):
 x = self.relu(self.conv1(x))
 x = self.relu(self.conv2(x))
 x = self.pool(x)
 x = self.relu(self.conv3(x))
 x = self.relu(self.conv4(x))
 x = self.flatten(x)
 x = self.relu(self.fc(x))
 x = self.out(x)
 return x

model = ConvNet()

Residual Networks
● How deep can we make these networks? Simply

stacking more convolutional layers eventually
degrades performance.

● One solution is to introduce “skip connections”:

● “Residual learning”
He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016.

> 150,000 citations!

Residual Networks
● ResNet-34:

● Get ResNet-50 by introducing “bottleneck” blocks:

● The 1x1 convolutions can be used to increase or
decrease the number of channels

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

