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Human Visual System

Urbanski, Marika, Olivier A. Coubard, and Clémence Bourlon. "Visualizing the blind brain: brain imaging of visual field 
defects from early recovery to rehabilitation techniques." Neurovision: Neural bases of binocular vision and coordination 
and their implications in visual training programs (2014).



  

Convolutional Neural 
Networks

● Convolutional neural networks use the same trick 
of learning layers of localized features…

● CNN’s were actually being used by Yann Lecun at 
Bell Labs around 1990



  

Convolutions

Grayscale Image
1 convolutional filter

http://upload.wikimedia.org/wikipedia/commons/4/4f/3D_Convolution_Animation.gif
By Michael Plotke [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)



  

Convolutions

Grayscale Image
1 convolutional filter

Color Image
5 convolutional filters

http://upload.wikimedia.org/wikipedia/commons/4/4f/3D_Convolution_Animation.gif
By Michael Plotke [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)

http://cs231n.github.io/convolutional-networks/
The MIT License (MIT)
Copyright (c) 2015 Andrej Karpathy



  

Pooling Layers
● Pooling layers down-sample the filter outputs to

– Reduce dimensionality and computational requirements
– Increase the spatial extent of subsequent filters

http://cs231n.github.io/convolutional-networks/
The MIT License (MIT)
Copyright (c) 2015 Andrej Karpathy



  

Complete Network
● A “traditional” CNN is composed of convolutional 

layers, each followed by non-linearities, followed by 
pooling layers, with one or more dense (non-
convolutional) layer at the end:



  

Complete Network (in PyTorch)

    
    model = nn.Sequential(
        
        nn.Conv2d(3, 5, 3, padding='same'),
        nn.ReLU(),
        
        nn.Conv2d(5, 5, 3, padding='same'),
        nn.ReLU(),
        
        nn.MaxPool2d(2, 2),
        
        nn.Conv2d(5, 8, 3, padding='same'),
        nn.ReLU(),
        
        nn.Conv2d(8, 8, 3, padding='same'),
        nn.ReLU(),
        
        nn.Flatten(),
        nn.Linear(16 * 16 * 8, 128),
        nn.ReLU(),
        
        nn.Linear(128, 10)
    )

Channels in Channels out Convolution size



  

Complete Network (alternate version)

class ConvNet(nn.Module):

    def __init__(self):
        super().__init__()
        self.relu = nn.ReLU()
        self.conv1 = nn.Conv2d(3, 5, 3, padding='same')
        self.conv2 = nn.Conv2d(5, 5, 3, padding='same')
        self.pool = nn.MaxPool2d(2, 2)
        self.conv3 = nn.Conv2d(5, 8, 3, padding='same')
        self.conv4 = nn.Conv2d(8, 8, 3, padding='same')
        self.flatten = nn.Flatten()
        self.fc = nn.Linear(16 * 16 * 8, 128)
        self.out = nn.Linear(128, 10)

    def forward(self, x):
        x = self.relu(self.conv1(x))
        x = self.relu(self.conv2(x))
        x = self.pool(x)
        x = self.relu(self.conv3(x))
        x = self.relu(self.conv4(x))
        x = self.flatten(x)
        x = self.relu(self.fc(x))
        x = self.out(x)
        return x

model = ConvNet()



  

Residual Networks
● How deep can we make these networks?  Simply 

stacking more convolutional layers eventually 
degrades performance.

● One solution is to introduce “skip connections”:

● “Residual learning” 
He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of 
the IEEE conference on computer vision and pattern recognition. 2016.

> 150,000 citations!



  

Residual Networks
● ResNet-34:

● Get ResNet-50 by introducing “bottleneck” blocks:

● The 1x1 convolutions can be used to increase or 
decrease the number of channels
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