
Support Vector Machines

http://www.cs.cmu.edu/~awm/tutorials/

Some material on these is slides borrowed from Andrew Moore's 
machine learning tutorials located at:



Where Should We Draw the Line?
?

?

?



Margins
● Margin – The distance from the decision boundary to 

the closest point.

}

Closest Point

Margin



Support Vector Machine
● Find the boundary with the maximum margin.
● The points that determine the boundary are the 

support vectors.

Support Vectors



Finding the Boundary...
● The equation for a plane:

● Suppose we have two classes, -1 and 1, we can use 
this equation for classification:

w⋅xb=0

c  x=sign w⋅xb



Visualizing the Boundary...

w⋅xb=0
w⋅xb0

w⋅xb0



Creating A Margin
● Input-output pairs: (xi, ti),  ti = -1 or 1
● We don't just want our samples to be on the right 

side, we want them to be some distance from the 
boundary

w⋅xib≥1 for t i=1

t i w⋅xib≥1

w⋅xib0 for t i=1

w⋅xib0 for t i=−1
Instead of this

We want this
w⋅xib≤−1 for t i=−1

Which is the same as this



Two Boundaries...

w⋅xb=−1
w⋅xb1

w⋅xb−1

w⋅xb=1

w⋅xb=0



Minimization
● The distance from a point, x, to the boundary can be 

expressed as:

● This can be maximized by minimizing ||w||.

● Minimize            subject to                     , for all i.

|w⋅x+b|
‖w‖

1

2
∥w∥

2

t i w⋅xib≥1

Determines the size of the margin Enforces correct classification



Quadratic Programming
1

2
∥w∥

2

t i w⋅xib≥1● Minimize            subject to                     , for all i.

● Minimizing a quadratic function subject to linear 
constraints... So What? 

● This is a (convex) quadratic programming problem.
● What does that mean?

– No local minima.
– Good solvers exist.



Lagrange Multipliers

● Minimize              subject to                     for all i.

● Lagrange multipliers are a tool for converting a 
constrained optimization problem into an 
unconstrained problem with additional variables…
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Dual Formulation
● Maximize:

● Once this is done we can get our weights according 
to:

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j(xi⋅x j)

subject to            and  λ i≥0 ∑
i

λ i t i=0

w=∑
i

λ i t i xi



Two Things to Notice

● Most of the     will be 0.  Those that are non-zero 
correspond to support vectors. 

● The inputs only show up in the form of dot products.

w=∑
i

λ i t i xi

λ i

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j(xi⋅x j)



What About This Case?

● We can introduce “slack variables” that penalize 
points on the wrong side of the boundary.

● Good news is that it barely changes the optimization 
process:

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j(xi⋅x j)

subject to                   and  0≤λ i≤C ∑
i

λ i t i=0



What About This Case?



A 1-D Classification Problem

x=0

http://www.cs.cmu.edu/~awm/tutorials/

● Where will an SVM put the decision boundary?



1-D Problem Continued

x=0

http://www.cs.cmu.edu/~awm/tutorials/

● No problem.
● Equidistant from the two classes.



The Non-Separable Case
● Now we have a problem...

x=0

http://www.cs.cmu.edu/~awm/tutorials/



Increase the Dimensionality
● Use our old data 

points xi to create a 
new set of data points 
zi.

● zi = (xi , xi
2)

x=0
http://www.cs.cmu.edu/~awm/tutorials/



Increase the Dimensionality
● Now the data is 

separable.

x=0
http://www.cs.cmu.edu/~awm/tutorials/



The Blessing of Dimensionality (?)
● This works in general.
● When you increase the dimensionality of your data, 

you increase the chance that it will be linearly 
separable. 

● In an N-1 dimensional space you should always be able 
to separate N data points. (Unless you are unlucky.)



Let's do it!
● Define a function          that maps our low 

dimensional data into a very high dimensional space.
● Now we can just rewrite our optimization to use these 

high dimensional vectors:

● What's the problem? 

 x

subject to                  and  0≤λ i≤C ∑
i

λ i t i=0

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j[ϕ(xi)⋅ϕ(x j)]



The Kernel Trick
● It turns out we can often find a kernel function K such 

that:
● In fact, almost any kernel function corresponds to a 

dot product in some space.
● Now we have: 

● Support vector machines are also called kernel 
machines.

K x
i
, x

j
= x

i
⋅ x

j


subject to                  and  0≤λ i≤C ∑
i

λ i t i=0

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t jK (xi , x j)



The Kernel Trick
● We get to perform classification in very high 

dimensional spaces for almost no additional cost.
● Some Kernels:

– Polynomial:

– Radial Basis Function: 

– Sigmoidal:
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Nice Things about SVM's
● Good generalization because of margin maximization.
● Not many parameters to pick.

– No learning rate, no hidden layer size.
– Just C, and possibly some parameters for kernel function.
– You also have to pick a kernel function.

● No problems with local minima.
● What about SVM regression? It's possible, but we 

won't talk about it. 
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