
Support Vector Machines

http://www.cs.cmu.edu/~awm/tutorials/

Some material on these is slides borrowed from Andrew Moore's
machine learning tutorials located at:

Where Should We Draw the Line?
?

?

?

Margins
● Margin – The distance from the decision boundary to

the closest point.

}

Closest Point

Margin

Support Vector Machine
● Find the boundary with the maximum margin.
● The points that determine the boundary are the

support vectors.

Support Vectors

Finding the Boundary...
● The equation for a plane:

● Suppose we have two classes, -1 and 1, we can use
this equation for classification:

w⋅xb=0

c x=sign w⋅xb

Visualizing the Boundary...

w⋅xb=0
w⋅xb0

w⋅xb0

Creating A Margin
● Input-output pairs: (xi, ti), ti = -1 or 1
● We don't just want our samples to be on the right

side, we want them to be some distance from the
boundary

w⋅xib≥1 for t i=1

t i w⋅xib≥1

w⋅xib0 for t i=1

w⋅xib0 for t i=−1
Instead of this

We want this
w⋅xib≤−1 for t i=−1

Which is the same as this

Two Boundaries...

w⋅xb=−1
w⋅xb1

w⋅xb−1

w⋅xb=1

w⋅xb=0

Minimization
● The distance from a point, x, to the boundary can be

expressed as:

● This can be maximized by minimizing ||w||.

● Minimize subject to , for all i.

|w⋅x+b|
‖w‖

1

2
∥w∥

2

t i w⋅xib≥1

Determines the size of the margin Enforces correct classification

Quadratic Programming
1

2
∥w∥

2

t i w⋅xib≥1● Minimize subject to , for all i.

● Minimizing a quadratic function subject to linear
constraints... So What?

● This is a (convex) quadratic programming problem.
● What does that mean?

– No local minima.
– Good solvers exist.

Lagrange Multipliers

● Minimize subject to for all i.

● Lagrange multipliers are a tool for converting a
constrained optimization problem into an
unconstrained problem with additional variables…

1
2
‖w‖

2
t i w⋅xib≥1

LP=
1
2
‖w‖

2
−

1
2∑i

λ i(t i(w
T xi+b)−1)

Dual Formulation
● Maximize:

● Once this is done we can get our weights according
to:

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j(xi⋅x j)

subject to and λ i≥0 ∑
i

λ i t i=0

w=∑
i

λ i t i xi

Two Things to Notice

● Most of the will be 0. Those that are non-zero
correspond to support vectors.

● The inputs only show up in the form of dot products.

w=∑
i

λ i t i xi

λ i

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j(xi⋅x j)

What About This Case?

● We can introduce “slack variables” that penalize
points on the wrong side of the boundary.

● Good news is that it barely changes the optimization
process:

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j(xi⋅x j)

subject to and 0≤λ i≤C ∑
i

λ i t i=0

What About This Case?

A 1-D Classification Problem

x=0

http://www.cs.cmu.edu/~awm/tutorials/

● Where will an SVM put the decision boundary?

1-D Problem Continued

x=0

http://www.cs.cmu.edu/~awm/tutorials/

● No problem.
● Equidistant from the two classes.

The Non-Separable Case
● Now we have a problem...

x=0

http://www.cs.cmu.edu/~awm/tutorials/

Increase the Dimensionality
● Use our old data

points xi to create a
new set of data points
zi.

● zi = (xi , xi
2)

x=0
http://www.cs.cmu.edu/~awm/tutorials/

Increase the Dimensionality
● Now the data is

separable.

x=0
http://www.cs.cmu.edu/~awm/tutorials/

The Blessing of Dimensionality (?)
● This works in general.
● When you increase the dimensionality of your data,

you increase the chance that it will be linearly
separable.

● In an N-1 dimensional space you should always be able
to separate N data points. (Unless you are unlucky.)

Let's do it!
● Define a function that maps our low

dimensional data into a very high dimensional space.
● Now we can just rewrite our optimization to use these

high dimensional vectors:

● What's the problem?

 x

subject to and 0≤λ i≤C ∑
i

λ i t i=0

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t j[ϕ(xi)⋅ϕ(x j)]

The Kernel Trick
● It turns out we can often find a kernel function K such

that:
● In fact, almost any kernel function corresponds to a

dot product in some space.
● Now we have:

● Support vector machines are also called kernel
machines.

K x
i
, x

j
= x

i
⋅ x

j

subject to and 0≤λ i≤C ∑
i

λ i t i=0

LD=∑
i

λ i −
1
2∑i

∑
j

λ iλ j t i t jK (xi , x j)

The Kernel Trick
● We get to perform classification in very high

dimensional spaces for almost no additional cost.
● Some Kernels:

– Polynomial:

– Radial Basis Function:

– Sigmoidal:

K x
i
, x

j
=x

i
⋅x

j
1

q

K x
i
, x

j
=tanh 2 x

i
⋅x

j
1

K x
i
, x

j
=exp 〚−∥x

i
−x

j
∥

2

2 〛

Nice Things about SVM's
● Good generalization because of margin maximization.
● Not many parameters to pick.

– No learning rate, no hidden layer size.
– Just C, and possibly some parameters for kernel function.
– You also have to pick a kernel function.

● No problems with local minima.
● What about SVM regression? It's possible, but we

won't talk about it.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

