Support Vector Machines

Some material on these is slides borrowed from Andrew Moore's machine learning tutorials located at:
http://www.cs.cmu.edu/~awm/tutorials/

Where Should We Draw the Line?

Margins

- Margin - The distance from the decision boundary to the closest point.

Support Vector Machine

- Find the boundary with the maximum margin.
- The points that determine the boundary are the support vectors.

Finding the Boundary...

- The equation for a plane:

$$
w \cdot x+b=0
$$

- Suppose we have two classes, -1 and 1 , we can use this equation for classification: $c(\boldsymbol{x})=\operatorname{sign}(\boldsymbol{w} \cdot \boldsymbol{x}+b)$

Visualizing the Boundary...

Creating A Margin

- Input-output pairs: $\left(x_{i}, t_{i}\right), t_{i}=-1$ or 1
- We don't just want our samples to be on the right side, we want them to be some distance from the boundary

Instead of this $\longrightarrow \begin{aligned} & \boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}+b>0 \text { for } t_{i}=+1 \\ & \boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}+b<0 \text { for } t_{i}=-1\end{aligned}$
We want this $\longrightarrow \begin{aligned} & \boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}+b \geq+1 \text { for } t_{i}=+1 \\ & \boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}+b \leq-1\end{aligned}$ for $t_{i}=-1$.
Which is the same as this $\longrightarrow t_{i}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}+b\right) \geq+1$

Two Boundaries...

Minimization

- The distance from a point, \boldsymbol{x}, to the boundary can be expressed as:

$$
\frac{|w \cdot x+b|}{\|w\|}
$$

- This can be maximized by minimizing $\|\boldsymbol{w}\|$.
- Minimize $\frac{1}{2}\|w\|^{2}$ subject to $t_{i}\left(w \cdot x_{i}+b\right) \geq+1$, for all i.

Quadratic Programming

- Minimize $\frac{1}{2}\|w\|^{2}$ subject to $t_{i}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}+b\right) \geq+1$, for all i .
- Minimizing a quadratic function subject to linear constraints... So What?
- This is a (convex) quadratic programming problem.
- What does that mean?
- No local minima.
- Good solvers exist.

Lagrange Multipliers

- Minimize $\quad \frac{1}{2}\|\boldsymbol{w}\|^{2} \quad$ subject to $t_{i}\left(\boldsymbol{w} \cdot \boldsymbol{x}_{\boldsymbol{i}}+b\right) \geq+1$ for all i.
- Lagrange multipliers are a tool for converting a constrained optimization problem into an unconstrained problem with additional variables...

$$
L_{P}=\frac{1}{2}\|w\|^{2}-\frac{1}{2} \sum_{i} \lambda_{i}\left(t_{i}\left(w^{T} x_{i}+b\right)-1\right)
$$

Dual Formulation

- Maximize:

$$
\begin{gathered}
L_{D}=\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} t_{i} t_{j}\left(\boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{x}_{\boldsymbol{j}}\right) \\
\text { subject to } \lambda_{i} \geq 0 \text { and } \sum_{i} \lambda_{i} t_{i}=0
\end{gathered}
$$

- Once this is done we can get our weights according to:

$$
w=\sum_{i} \lambda_{i} t_{i} x_{i}
$$

Two Things to Notice

$$
w=\sum_{i} \lambda_{i} t_{i} x_{i}
$$

- Most of the λ_{i} will be 0 . Those that are non-zero correspond to support vectors.

$$
L_{D}=\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} t_{i} t_{j}\left(\widehat{\boldsymbol{x}_{i} \cdot \boldsymbol{x}_{j}}\right)
$$

- The inputs only show up in the form of dot products.

What About This Case?

- We can introduce "slack variables" that penalize points on the wrong side of the boundary.
- Good news is that it barely changes the optimization process:

$$
\begin{array}{r}
L_{D}=\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} t_{i} t_{j}\left(x_{i} \cdot x_{j}\right) \\
\text { subject to } 0 \leq \lambda_{i} \leq C \text { and } \sum_{i} \lambda_{i} t_{i}=0
\end{array}
$$

What About This Case?

A 1-D Classification Problem

- Where will an SVM put the decision boundary?

1-D Problem Continued

- No problem.
- Equidistant from the two classes.

http://www.cs.cmu.edu/~awm/tutorials/

The Non-Separable Case

- Now we have a problem...

Increase the Dimensionality

- Use our old data points x_{i} to create a new set of data points
Z_{i}
- $\boldsymbol{z}_{i}=\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i}^{2}\right)$
http://www.cs.cmu.edu/~awm/tutorials/

Increase the Dimensionality

- Now the data is separable.

The Blessing of Dimensionality (?)

- This works in general.
- When you increase the dimensionality of your data, you increase the chance that it will be linearly separable.
- In an N-1 dimensional space you should always be able to separate N data points. (Unless you are unlucky.)

Let's do it!

- Define a function $\phi(\boldsymbol{x})$ that maps our low dimensional data into a very high dimensional space.
- Now we can just rewrite our optimization to use these high dimensional vectors:

$$
\begin{gathered}
L_{D}=\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} t_{i} t_{j}\left[\phi\left(x_{i}\right) \cdot \phi\left(x_{j}\right)\right] \\
\text { subject to } 0 \leq \lambda_{i} \leq C \text { and } \sum_{i} \lambda_{i} t_{i}=0
\end{gathered}
$$

- What's the problem?

The Kernel Trick

- It turns out we can often find a kernel function K such that:

$$
K\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\phi\left(x_{i}\right) \cdot \phi\left(x_{j}\right)
$$

- In fact, almost any kernel function corresponds to a dot product in some space.
- Now we have:

$$
\begin{aligned}
& L_{D}=\sum_{i} \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} t_{i} t_{j} K\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right) \\
& \text { subject to } 0 \leq \lambda_{i} \leq C \text { and } \sum_{i} \lambda_{i} t_{i}=0
\end{aligned}
$$

- Support vector machines are also called kernel machines.

The Kernel Trick

- We get to perform classification in very high dimensional spaces for almost no additional cost.
- Some Kernels:
- Polynomial: $K\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\left(\boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{x}_{\boldsymbol{j}}+1\right)^{q}$
- Radial Basis Function: $K\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\exp \left[\frac{-\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right\|^{2}}{\sigma^{2}}\right]$
- Sigmoidal: $K\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)=\tanh \left(2 \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{x}_{\boldsymbol{j}}+1\right)$

Nice Things about SVM's

- Good generalization because of margin maximization.
- Not many parameters to pick.
- No learning rate, no hidden layer size.
- Just C, and possibly some parameters for kernel function.
- You also have to pick a kernel function.
- No problems with local minima.
- What about SVM regression? It's possible, but we won't talk about it.

