CS445

Nathan Sprague

January 25, 2024

Expectation, Variance

■ Expectation (continuous) (also referred to as the "mean" or " first moment")

$$
\mu=\mathbb{E}[x]=\int x f(x) d x
$$

■ Expectation (discrete)

$$
\mathbb{E}[X]=\sum_{1}^{n} P\left(x_{i}\right) x_{i}
$$

- Variance (also referred to as the "second moment")

$$
\sigma^{2}=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]
$$

Quiz

$$
\begin{array}{r}
\mathbb{E}[X]=\sum_{1}^{n} P\left(x_{i}\right) x_{i} \\
\sigma^{2}=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]
\end{array}
$$

Imagine we are rolling a four-sided die. The following probability distribution describes the probability for each number that we could roll:
$\mathrm{P}(\mathrm{X}=1)=.7$
$P(X=2)=.1$
$P(X=3)=.1$
$\mathrm{P}(\mathrm{X}=4)=.1$
What is the expected value of this distribution? What is the variance?

Sample Mean and Variance

Expectation and variance are properties of distributions. We can also calculate the sample mean and the sample variance for a given data set:
$\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

- Sample mean

$$
m=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Sample variance

$$
s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m\right)^{2}
$$

Normal Distribution

$$
f(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

(Normal because of the central limit theorem.) All distributions

