
1. Controlling Physical Systems

1.1 Introduction

Computer programmers are accustomed to instructions that operate instantaneously and reliably. Both
assumptions fail when writing code that controls a physical system. In this chapter we will take the
first steps towards writing programs that can reliably control physical systems in an unpredictable
world.

1.2 Open Loop Control

Consider the problem of programming a controller for the self-driving locomotive in Figure 1.1. In this
figure x indicates the starting position of the locomotive and g indicates the goal location.

Our first attempt at developing a controller might look something like the following:

x g

Figure 1.1: A self-driving locomotive.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



10 Chapter 1. Controlling Physical Systems

x(t) g(t)

e(t)

Figure 1.2: A self-driving locomotive.

Listing 1.1: Open Loop Control Algorithm
��� ������������ ���

� ��������� ��� �������� �� �������

� � � � �

� ����� ���� �������� �� ��� �������

��� ��� �������

����� ������� �� � ����� �� ��������

Algorithm 1.1 is an example of an open loop controller. Open-loop control involves sending a
sequence of control signals that, based on our understanding of the system we are controlling, should
move the system into the target configuration.

There are problems with Algorithm 1.1. First, locomotives are heavy. The success of this algorithm
relies on the unrealistic assumption that we can instantaneously changing the speed from zero to the
desired value of d/s. Second, even after the locomotive reaches the target speed, factors like friction
and mechanical imperfections will make it impossible to perfectly maintain that speed. Over time,
small errors in speed will result in significant errors in the final position.

1.3 Closed Loop Control

The problems with the naive controller in Algorithm 1.1 can be avoided by using closed loop control.
Closed loop controllers continuously monitor the current error in the system and update the control
signal to push the error toward zero. This approach tends to be more reliable because the controller
responds to the actual state of the system and is able to make adjustments when the system fails to
behave as expected.

The PID (Proportional, Inverse, Derivative) controller is the classic example of closed loop control.
The next several sections will introduce the PID controller by describing each of these three terms. The
following table outlines the notation that will be used (Figure 1.2 also uses this notation).

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



1.3 Closed Loop Control 11

x(t) The state of the system at time t. In the case of the locomotive this
is the position on the track. More generally, this could describe any
state variable that we are interested in controlling. This could be
the temperature of a room or the altitude of a rocket.
For now, we will assume that state information is provided by a
reliable sensor. In future chapters we will consider the problem of
estimating this value when sensors are absent or unreliable.

g(t) Goal state at time t.
e(t) Error at time t.

We will let e(t) = g(t)− x(t). In the case of the locomotive, this
value is zero when the locomotive is at the goal position, positive
when the locomotive is to the left of the goal, and negative if the
locomotive overshoots and ends up to the right of the goal.

u(t) The control signal at time t. The interpretation of u(t) depends
on system we are attempting to control. In some cases u(t) might
represent a low-level control signal like the voltage sent to a motor.
In other cases we may be working with a robot that allows us to
directly specify a desired velocity or acceleration.
In the case of our hypothetical locomotive, we will assume we have
an API provides a �������� function that takes a number in the
range (-100, 100) where +100 represents “full speed ahead” and
-100 represents “full reverse”.

1.3.1 Proportional Control

Mathematically, we can think of the problem of developing a controller as finding an expression for
u(t) in terms of e(t). One simple possibility is to follow the intuition that the magnitude of the control
signal should be proportional to the current error. In the locomotive example, this means we should
apply more throttle when the locomotive is far from the goal location, and ease off as the locomotive
gets closer. This idea can be expressed as follows:

u(t) = Kpe(t) (1.1)

The value Kp is referred to as a gain term. This is a constant that determines how large the control
signal will be for a particular error value. Doubling the gain doubles the magnitude of the control signal.
Developing a successful controller involves selecting an appropriate gain value, either by analyzing the
system or through trial and error.

Algorithm 1.2 shows how we can implement a proportional controller for the locomotive exam-
ple.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



12 Chapter 1. Controlling Physical Systems

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0

e(
t)
(m

et
er

s)

Starts 1m from
the goal.

Reaches goal.

Overshoot!

KP = 10.0

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0

e(
t)

(m
et

er
s)

KP = 100.0

Figure 1.3: Locomotive position error over time for two different values of KP.

Listing 1.2: Proportional Control Algorithm
��� ������������������ � �� �����

����� �����

� � � � �������

� � ��� � �

�����������������

Figure 1.3 shows the result of using a proportional controller to implement our locomotive controller
using two different values of KP.

These results are not very satisfying. The locomotive overshoots the goal and then over-corrects, driving
back and forth indefinitely. Changing the value of KP doesn’t solve the problem, it only changes the
period of the oscillations.

1.3.2 Adding a Derivative Term

One problem with our proportional controller is that it only considers the position of the locomotive,
not the speed. Intuitively, it seems that if the error is already decreasing quickly, we should reduce the
control signal to avoid overshooting the goal. Conversely, if the error is still increasing in spite of the
proportional control, we should further increase the magnitude of the control signal. These intuitions

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



1.3 Closed Loop Control 13

can be captured by adding a derivative term to the controller:

u(t) = Kpe(t)+ Kd
de(t)

dt

derivative term

(1.2)

The term
de(t)

dt
describes the rate of change in the error. This is negative if the error is decreasing and

positive if the error is increasing. The value Kd is a gain that is used to tune the impact of the derivative
term.

Using the derivative term requires us to know
de(t)

dt
, but sensors don’t usually provide direct access

to this value. Instead, we need to estimate it by tracking the change in error over time. Even though
the physical systems we are controlling operate continuously, our algorithms necessarily perform their
steps at discrete time intervals. Assuming our controller is updated every Δt seconds, we can estimate
the derivative as the slope between the two most recent error values:

de(t)
dt

≈ e(t)− e(t −Δt)
Δt

(1.3)

Discrete approximations like this are common in robotics and in other areas of scientific computing but
they aren’t always made explicit. It takes some experience to get comfortable moving from continuous
to discrete formulations. Algorithm 1.3 illustrates how we can use the discrete approximation in
Equation 1.3 to implement the control algorithm described in Equation 1.2.

Listing 1.3: Proportional Derivative Control Algorithm
��� ������������������� � �� ��� � �����

������ � � � �������

����� �����

� � � � �������

���� � �� � ������� � �������� � �������� ���

� � ��� � � � ��� � ����

�����������������

������ � �

Figure 1.4 shows the result of introducing the derivative term in our controller. For appropriate values
of KD the oscillations are damped, and the locomotive settles at the goal location.

Stop and Think

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



14 Chapter 1. Controlling Physical Systems

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0
e(
t)
(m

et
er

s)
KP = 50.0

KD = 5

KD = 20

KD = 60

Figure 1.4: Locomotive position error over time for three different values of KD.

x(t) g(t)

e(t)

Figure 1.5: Locomotive on a hill.

1.1 The ����� loop in Listing 1.3 does not include any explicit delays. It is written under the
assumption that methods called on the ����� object will only return after an appropriate delay.
What could go wrong if this is not the case? In other words, what will happen if the execution time
of the loop is much shorter than ��������? �

Droop

What happens when we try to apply the same controller when the locomotive is located on a slight
incline as shown in Figure 1.5? In this situation, which is illustrated in Figure 1.6, the locomotive never
quite reaches the goal position. The locomotive comes to rest at the point where the proportional force
applied by the controller is exactly counterbalanced by gravity. Increasing Kp will move the stationary
point closer to the goal, but this controller will never drive the error all the way to zero. The situation
where the proportional term is not sufficient to drive the error term to zero is sometimes referred to as
“droop”.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



1.3 Closed Loop Control 15

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0
e(
t)
(m

et
er

s)

“Droop”

KP = 50.0,KD = 20

Figure 1.6: Locomotive position error over time for the PD locomotive controller when the locomotive
is on an incline. The locomotive stops short of the goal at the point where the control output is
counter-balanced by gravity.

1.3.3 Adding an Integral Term
The problem of droop can be addressed by adding one more term to our controller:

u(t) = KPe(t)+ KI

� t

0
e(τ)dτ

integral term

+KD
de(t)

dt
(1.4)

Where the derivative term allows the controller to look forward in time, the integral term allows the
controller to look backwards in time. The integral

� t
0 e(τ)dτ essentially “stores up” the error that the

system sees over time. As long as the error fails to reach zero,
� t

0 e(τ)dτ will steadily increase in
magnitude.

As with the derivative, the integral value is not available directly, but must be estimated from discrete
samples. In this case, the integral can be estimated using a summation that adds the current error value
at each time step:

(1.5)

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



16 Chapter 1. Controlling Physical Systems

0 1 2 3 4 5

t (seconds)

−1.0

−0.5

0.0

0.5

1.0
e(
t)
(m

et
er

s)

No droop!

KP = 50.0,KI = 40,KD = 20

slope = 5o

slope = 10o

slope = 15o

Figure 1.7: Locomotive position error over time for a different slopes. With appropriate gain values the
PID controller reliably moves the locomotive to the goal location.

Listing 1.4: PID Control Algorithm
��� �������������������� � �� ��� � ��� � �����

������ � � � �������

����� � � � ����������� ��� �������� ����

����� �����

� � � � �������

����� � ����� � � � �������� � ���� �������� ���

���� � �� � ������� � �������� � �������� ���

� � ��� � � � ��� � ����� � ��� � ����

�����������������

������ � �

Algorithm 1.4 illustrates a complete PID controller. Figure 1.7 shows the result of adding an integral
term to our locomotive controller. With an appropriate value of KI , the resulting controller reliably
moves the locomotive to the goal regardless of the slope.

Stop and Think
1.2 Practical implementations of PID controllers often place a cap on the amount of error that can

be accumulated in the integral term of the controller. Why do you think this is necessary? What
could go wrong if the controller were to start out far from the goal configuration, accumulating a
large amount of error before the goal is reached? �

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



1.4 Proportional Robot Control 17

1.3 The process outlined above for tuning the PID gain terms is ad-hoc: we just experimented
with different values until the behavior looked right. A more rigorous approach would require
a quantitative way to evaluate the success of a particular PID controller. Can you think of some
quantitative measurements that might be useful for comparing two controllers? �

1.4 Consider the following graph of error as a function of time. Assuming that this system is being
controlled by a PID controller, how would you suggest what the gain terms be modified?

0.0 0.5 1.0 1.5 2.0 2.5
t

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

e
(t

)

�

1.5 Consider the following graph of error as a function of time. Assuming that this system is being
controlled by a PID controller, how would you suggest what the gain terms be modified?

0.0 0.5 1.0 1.5 2.0 2.5
t

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

e
(t

)

�

1.4 Proportional Robot Control
You may feel that a self-driving locomotive is a disappointingly simple robot: all it can do is move
backward and forward along a linear track. Don’t fear, this book will mostly focus on mobile robots
that are able to move freely in multiple dimensions. In this section we will develop a proportional
controller for driving a wheeled robot to a goal location as illustrated in Figure 1.8.

This is an example of a differential drive robot. This type of robot has two independently controllable
wheels. When both wheels are rotated in the same direction at the same speed the robot moves directly
forward or backward. If both wheels are turned in opposite directions the robot will rotate in place.
The robot can follow a curved path by rotating each wheel at a different speed.

Since it is not intuitive to steer a differential drive robot by directly controlling the wheel velocities, the
driver software for such robots often accepts commands specifying two velocity values: v and w, where
v is the forward velocity in meters/second and w is the rotational velocity in radians/second.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



18 Chapter 1. Controlling Physical Systems

Figure 1.8: Differential drive robot.

y

x

yr

xr

Θr

yg

xg

Figure 1.9: Overhead view of the robot and goal.

Figure 1.9 illustrates the parameterization of the control problem. The pose of the robot is specified
with three numbers: (xr,yr,Θr), where the xr and yr coordinates specify the position of the center of
the robot with respect to some fixed point in the room and the Θr value indicates the robot’s heading.
Heading values (in radians) are in the interval [−π,π], where Θr = 0 indicates that the robot is pointing
along (or parallel to) the x-axis. As the robot turns counterclockwise, Θr increases. The value of Θr in
figure Figure 1.9 is approximately π

4 (or 45o).

We can solve this control problem by creating two separate proportional controllers that will operate
simultaneously: one controller to output a rotational velocity that turns the robot toward the goal, the
other to output a forward velocity that keeps the robot moving forward until it reaches the goal.

The first step in developing the rotational controller is determining the desired angle for the robot. The
problem is illustrated in Figure 1.10. Determining Θg from the positions of the robot and goal requires
some trigonometry:

Θg = tan−1 yg − yr

xg − xr
(1.6)

Actually, this won’t quite give us what we want. Equation 1.6 doesn’t distinguish between the case
when both the numerator and denominator are positive and the case when they are both negative. This
means that a goal above and to the right of the robot will result in the same angle as an object below
and to the left. The math libraries for many programming languages address this difficulty by providing

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



1.4 Proportional Robot Control 19

y

x

xg − xr

yg − yr
Θg

Figure 1.10: Goal angle calculations

a function named ����� that takes the numerator and denominator as separate arguments and correctly
calculates the angle taking the signs of the arguments into account. A Python implementation might
look something like the following:

������� � �������������� � ���� ��� � ����

Given that we can calculate a target angle, our rotational controller can be specified using the formula
for a proportional controller (dropping the time index for clarity):

w = KPw(Θg −Θr) (1.7)

Unfortunately, subtracting angles in a sensible way requires some caution. Consider the situation in
Figure 1.11. Naively calculating the error by subtracting the two angles gives us .9π − (−.9π) = 1.8π .
Plugging this into our proportional controller will result in a hard left turn. This isn’t exactly wrong: it
is possible for the robot to point toward the goal by turning to the left. However, it clearly makes more
sense to select the smaller angle between our current heading and the target heading and have the robot
turn right. We will use the symbol � to indicate an angle subtraction operation that has this effect. With
this modification we can completely specify the control scheme for the differential drive robot.

w =KPw(Θg �Θr) (1.8)

v =KPv

�
(yg − yr)2 +(xg − xr)2 (1.9)

Equation 1.9 expresses the idea that the robot’s forward velocity should be proportional to its Euclidean
distance from the goal. Since this velocity control is independent of the angle, the robot may initially
move away from the goal. We could address through a more complicated control mechanism, but the
point here is to illustrate a simple example of proportional control. Figure 1.12 shows several example
trajectories of a simulated differential drive robot under the control scheme presented in Equations 1.8
and 1.9.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



20 Chapter 1. Controlling Physical Systems

y

x

Θg = .9πΘr =−.9π

Figure 1.11: The robot can either turn .2π radians clockwise, or 1.8π radians counterclockwise to face
the goal. We want a difference operation that always returns the smaller angle.

Figure 1.12: Example trajectories for a proportional controller that moves a differential drive robot to a
goal location. The robot images indicate the starting positions for seven simulated navigation trials.

Notice that, unlike the locomotive example, it wasn’t necessary to include integral or derivative terms
in this controller. They weren’t needed because we were able to set the speed of the robot directly. This
means we didn’t need to worry as much about overshooting the goal or applying too little force to reach
it. It often makes sense to start with a pure proportional controller and add integral or derivative terms
if they prove necessary.

1.5 Limitations of PID Controllers

PID control is widely used because it is simple to implement and can be applied in a wide range of
situations. We can use PID control even when we don’t have an accurate model of the system we
are controlling. In this chapter we used trial and error to develop a PID controller for a simulated
locomotive. It wasn’t necessary to understand the physics involved: we didn’t need to estimate frictional
forces, we didn’t need an exact specification of the forces created by the throttle. We only needed to
tune the three gain parameters until we were satisfied with the performance.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.



1.6 References and Further Reading 21

The ad-hoc nature of PID control can also be seen as a disadvantage. PID controllers tend to work well
in practice, but they don’t provide any optimality guarantees. In cases where we do have an accurate
system model, it’s possible to develop more principled controllers that explicitly minimize a cost
function related to the quality of the solution. This could allow us to create a controller that reaches the
goal in the minimum time or with minimal energy expenditure. Such controllers are beyond the scope
of this book, but the classic optimal controller is the Linear Quadratic Regulator or LQR.

More significantly, the kind of low-level control discussed in this chapter is obviously not appropriate
for complex control problems that extend over longer periods of time. A PID controller will not save
the day for the robot in Figure 1.13. Problems like this will require planning algorithms of the sort
described in Chapter 3.

???

Figure 1.13: A control problem that can’t be solved with the tools in this chapter.

1.6 References and Further Reading
1.6.1 Closed-Loop Controllers

Elements of the PID control model have been in place since the time of the industrial revolution. A
history of the development of PID control theory since 1900 is provided in (Bennett, 2001). PID
controllers are widely used in both robotics and industrial automation, and as such, there is a huge
literature on tuning and implementing PID controllers. A recent 500-page reference can be found in
(Johnson & Moradi, 2006).

A standard reference on the Linear Quadratic Regulator is (Anderson & Moore, 1990).

1.6.2 General Robotics Resources
There are a huge number of robotics textbooks and references. I will highlight a few here that are
particularly notable and were useful in the development of this book.

The most widely used artificial intelligence textbook is (Russell & Norvig, 2010). While that book has
a broader scope than just robotics, many areas of AI are directly relevant to robotics work. Another
excellent general AI textbook is (Poole & Mackworth, 2017). This book has the advantage of being
available online at no cost: https://artint.info/.

Computational Principles of Mobile Robotics (Dudek & Jenkin, 2010) is a robotics textbook that has
a similar focus to this work: it is targeted to computer scienists and focuses on algorithmic issues in

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.


