
4. Probabilistic Localization

4.1 Introduction

In previous chapters we assumed that the we had access to accurate information about the state of the
world. For example, in Chapter 1 we developed a closed-loop controller for moving a robot to a goal
by repeatedly comparing the robot’s current location to the goal location. This raises the question of
how we can know the exact location of the robot. The short answer is that we can’t. It is possible to
estimate the robot’s location by using two general sources of information:

• Sensors - There are a wide range of sensors that can provide information about the position of a
robot. Cameras may be used to detect landmarks. Depth sensors may be used to estimate the
robot’s position in a map. Bump sensors may be used to determine when the robot is in contact
with an obstacle.

• Dead reckoning - Assuming the initial location of a robot is known, it’s location at some later
time can be estimated by considering the control signals that have been applied. If we send
commands telling the robot to move forward at 1m/s for 1s, the robot should end up one meter
ahead of the initial location.

There is inherent uncertainty associated with each of these sources of information. No sensor is perfect.
Dead reckoning is never perfectly reliable. The goal of this chapter is to introduce a probabilistic
framework that will make it possible to represent and reason about this uncertainty.

For the sake of concreteness, this chapter will focus on probabilistic representations of a robot’s location,
but the same mathematical tools are useful for representing any uncertain information.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

58 Chapter 4. Probabilistic Localization

4.2 Discrete Probability Distributions
A discrete random variable, usually expressed as an upper-case letter such as X , is a variable that
can take on a fixed number of possible values. A probability distribution, also called a probabil-
ity mass function, is a function that maps from each possible value of the random variable to its
probability.

As a simple example, consider a Boolean random variable H that describes the possible outcomes
of flipping a coin. In this case, the possible values for H are True indicating that the coin landed on
heads or False indicating that the coin landed on tails. The probability mass function for a fair coin is
then

P(H = True) = .5

P(H = False) = .5

In the case of Boolean variables we often use the more concise convention of indicating an assignment
of true using a lower case variable, so that P(H = True) could be expressed as P(h) and P(H = False)
could be expressed as P(¬h).

A valid probability mass function must satisfy the following conditions:

• Probabilities must not be negative or greater than one:

0 ≤ P(X = xi)≤ 1 for all xi

• The probability mass function must sum to one:

∑
xi

P(X = xi) = 1

Discrete random variables need not be Boolean-valued. In particular, a random variable may be used to
describe our uncertainty about the location of a robot, with each possible robot location corresponding
to a value for the random variable, and the probability distribution describing our beliefs about which
location is correct. For example, consider the problem of tracking the location of a robot in a one-
dimensional world (perhaps our autonomous locomotive from Chapter 1). Figure 4.1 illustrates the
idea. The horizontal location of each bar corresponds to a discretized value for the position variable,
while the height of the bars correspond to the value of the probability mass function for that position.
Notice that the height of all bars must always sum to one, since we know that the robot must be located
at some location. The same information may also be presented in tabular form as illustrated in Figure
4.2.

In a more realistic scenario, the values for our random variable could be entries in a grid corresponding
to possible locations in a two-dimensional workspace. This idea is illustrated in Figure 4.3.

4.2.1 Joint Probabilities
Probabilistic models of complex systems generally involve multiple, interacting, random variables. The
multivariate generalization of the probability distribution is the joint probability distribution. A joint
probability distribution maps from every possible outcome of all variables to the probability for that set
of assignments. For example, In the case of our 1-d robot above, we can introduce a second random

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

4.2 Discrete Probability Distributions 59

1 10
0.0

0.5

1.0
P
(X

)

(a)

1 10
0.0

0.5

1.0

(b)

1 10
0.0

0.5

1.0

(c)

Figure 4.1: Sample histogram probability distributions describing our belief about the location of a
robot in a one-dimensional environment. (a) Uniform distribution representing a complete lack of
knowledge about the location of the robot. (b) Certain knowledge that the robot is in location 1. (c)
Belief that the robot is most likely to be in location 5, but may be in nearby locations to the left or right.

X P(X)
1 .1
2 .1
3 .1
4 .1
5 .1
6 .1
7 .1
8 .1
9 .1
10 .1

(a)

X P(X)
1 1.0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
10 0

(b)

X P(X)
1 0
2 .004
3 .054
4 .242
5 .400
6 .242
7 .054
8 .004
9 0
10 0

(c)

Figure 4.2: Tabular representations of the probability distributions illustrated in Figure 4.1. Notice that
the rows sum to one in each table.

� � � � � � � � � ��

�

�

�

�

�

�

�

�

�

��

���

���

���

���

���

���

Figure 4.3: Sample two-dimensional probability distribution. In this example, shading is used to
indicate the probability of the robot being located in a particular grid cell.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

60 Chapter 4. Probabilistic Localization

variable representing the output of a wall detection sensor that is designed to tell us when we are near
one of the two boundaries of the hallway (state 1 or state 10). This is activated with probability .8 when
the robot is at either end of the hallway, .1 when it is one step away from either end and 0 for all other
locations.

In the case where we know nothing about the location of the robot, our joint probability distribution
will look like the following for our location/sensor scenario:

X Z P(X,Z)
1 beep .08
1 ¬beep .02
2 beep .01
2 ¬beep .09
3 beep 0
3 ¬beep .1

. . .
8 beep 0
8 ¬beep .1
9 beep .01
9 ¬beep .09
10 beep .08
10 ¬beep .02

Table 4.1: Joint probability distribution for robot position X and wall sensor output Z.

Marginalization
Given the full joint distribution we can always recover the probability distribution for an individual
variable through marginalization, or summing out. In the general case, this can be expressed as:

P(A = a) = ∑
b∈B

P(A = a, b) (4.1)

This means that if we want to calculate the probability of some assignment to A using the joint
distribution, we just need to sum up all of the rows in the table that match that assignment to A. For
example, given our location/sensor example above, we can recover the probability that the robot is at
position 2 as follows:

P(X = 2) = P(X = 2, beep)+P(X = 2, ¬beep)

= .01+ .09

= .1

Stop and Think

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

4.2 Discrete Probability Distributions 61

4.1 Based on the joint probability distribution in Table 4.1, what is P(beep)? What is P(¬beep)? �

Independence
Two random variables are defined to be independent if and only if

P(A∩B) = P(A)P(B). (4.2)

Intuitively, A and B are independent if knowing the value of A provides no information about the
value of B. For example, whether or not a region will experience an earthquake on a particular day is
independent of the occurrence of a tornado: there is no reason to believe that one will make the other
more or less likely. On the other hand, whether a region will experience an earthquake on a given day
is not independent of the possibility of a tsunami: earthquakes can cause tsunamis, so knowing that one
has occurred increases the probability of the other.

The notion of independence is important for probabilistic reasoning. In the example from the previous
section, we saw a joint probability distribution with two random variables. In general, applications
involving probabilistic reasoning may involve many random variables. For example, consider a robot
navigating through an office building with 20 doors that may each be open or closed. Assuming that
the robot is unable to open doors, path planning in this environment will require reasoning about the
possible states of all doors. In order to write down the full joint probability distribution describing
every possible combination of closed and open doors, we would need a table with 220 ≈ 1,000,000
rows. It is much more efficient, in terms of both space and computation, to make the assumption that
the state of each door is independent of the state of every other door. In that case we only need to store
20 individual probability distributions with two rows each. We can then reconstruct the probability
of any combination of closed and open doors by simply multiplying together the appropriate 20
probabilities.

Note that independence assumptions of this sort may be useful even if they aren’t entirely correct. In
a real office building it is unlikely that the states of individual doors will be entirely independent. If the
doorway to a suite of offices is open, there is probably someone working in that suite, which would make
it more likely that the individual office doors will be open as well. This is a case where it is necessary
to settle for an approximately correct answer in the interest of computational tractability.

Stop and Think

4.2 The probability that it will rain today, P(R) is independent of the probability of an earthquake,
P(E). Assuming P(r) = .7 and P(e) = .001, what is the probability that it will be a rainy day with
no earthquake? P(r,¬e) =?? �

4.2.2 Conditional Probabilities
Probability distributions like P(X) are sometimes described as prior probabilities because they
describe our initial belief about X before we have taken any evidence into account. Conditional
probabilities allow us to express the probability for one random variable, given that we know the value
of some other random variable. Conditional probability is defined as follows:

P(A | B) =
P(A∩B)

P(B)
(4.3)

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

62 Chapter 4. Probabilistic Localization

Conditional probabilities provide a useful way of thinking about the relationship between a robot’s state
and sensor data. For robot localization, some variables represent unknown state information that we are
attempting to estimate. This unknown state information is commonly denoted X . On the other hand,
some variables represent known values received from a sensor. These values are commonly denoted
Z. For the purpose of localization, it would be useful to have access to the conditional probability
distribution P(X | Z). This is exactly the distribution over X given our known sensor value Z.

As an example of conditional probability, consider the case of a cliff detection sensor designed to
prevent a home-vacuuming robot from falling down stairways. In this case, S is a Boolean random
variable indicating whether a stairway is actually present, and the variable Z is true if the cliff-detection
sensor has activated. The following table describes the full joint probability distribution:

S Z P(S,Z)
T T .0495
T F .0005
F T .095
F F .855

Using this table, along with Equations 4.1 and 4.3, we can calculate, for example, the false positive
rate of our sensor: P(Z = True | S = False). In other words, what is the probability that the sensor will
indicate that a stairway is present when it is not.

P(Z = True | S = False) =
P(Z = True∩S = False)

P(S = False)

=
.095

P(S = False)
(From the third row of the table above)

=
.095

P(S = False,Z = True)+P(S = False,Z = False)
(Marginalization)

=
.095

.095+ .855
= .1

Stop and Think

4.3 Look back at table 4.1. Apply definition 4.3 to calculate P(X = 0 | Z = beep). �

Conditional Independence
Section 4.2.1 introduced the idea of independent random variables. Now that we have an understanding
of conditional distributions we can introduce a second notion of independence that is also a valuable
tool in probabilistic reasoning.

Conditional independence is defined as follows:

A random variable A is conditionally independent of C given B if and only if

P(A | B,C) = P(A | B). (4.4)

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

4.2 Discrete Probability Distributions 63

Intuitively, this means that, if we already know B, then learning something about C doesn’t tell us
anything additional about A. This is a bit more subtle than the definition of independence introduced
earlier. Stating that A is conditionally independent from C given B is not the same as saying that any
two of those variables are independent. As an example, consider the following scenario:

• A: The east door to the mall is locked
• B: The mall is open for business
• C: The west door to the mall is locked

In this case, A and C are not independent. If I learn that one door is locked, that increases my belief
that the other will be locked as well. However, they are conditionally independent given B: if I already
know whether or not the mall is open, then learning the state of the west door doesn’t give me any
additional information about east door.

4.2.3 Bayes’ Rule
Unfortunately definition (4.3) often isn’t useful for determining P(X | Z) because it requires us to have
access to the full joint probability distribution P(X ,Z). In practice, that full distribution is usually not
easy to obtain in an explicit form. Bayes’ rule or Bayes’ theorem is tremendously useful here. Baye’s
rule can be expressed as follows:

P(X | Z) =
P(Z | X)P(X)

P(Z)
(4.5)

Bayes’ rule provides a recipe for taking the prior probability P(X) that describes our initial beliefs
about the robot’s state and calculating a posterior probability P(X | Z) that describes our updated
belief after into account information from a sensor reading.

In order to apply Bayes’ rule, we need to know two things:

• P(Z | X) - The conditional probability of sensor readings given state information. This is often
described as the sensor model. It simply captures what we know about how our sensor works.

• P(X) - The prior distribution over our state variable.

It turns out we don’t need to know P(Z) explicitly. It can be calculated from P(Z | X) and P(X) using
the total probability formula:

P(Z) = ∑
x∈X

P(Z | X = x)P(X = x) (4.6)

Alternatively, it is common to to replace P(Z) using a normalizing constant α defined as

α =
1

P(Z)
.

This results in the following alternate form of Bayes’ rule:

P(X | Z) = αP(Z | X)P(X) (4.7)

This formulation takes advantage of the fact that we know that P(Z) is the same for every state. We can
simply solve for the value of α that makes the posterior probability sum to one.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

64 Chapter 4. Probabilistic Localization

Figure 4.4: A scenario with ten discrete robot locations. There is a radio beacon at location 5.

1 10

X

0.0

0.5

1.0

P
(Z

=
T
r
u
e
|X

)

Figure 4.5: Sensor model for our radio beacon detector. The probability that the sensor will activate
falls off as the robot moves further away from the beacon. Notice that this figure is not illustrating a
probability distribution of the type shown in Figure 4.1. In this case the probabilities don’t need to sum
to one.

Bayes’ Rule Example
Consider another one-dimensional robot that may be in one of ten discrete locations. In this case,
there is a radio beacon located at location 5 and the robot has a sensor that detects the beacon with a
probability that is related to distance. The scenario is illustrated in Figure 4.4.

When the robot is in the same location as the beacon, it will be detected with a probability of 1. When
the robot is one step away, it will be detected with a probability of .5. The probability of detection
continues to drop off at a rate of 50% for each step away from the beacon. Figure 4.5 illustrates this
sensor model.

In this scenario, Bayes’ rule allows us to update our belief about where the robot is located based on
the signal received from the radio sensor. Let’s assume that our prior probability distribution over the
robot’s location looks like this:

1 10
0.0

0.5

1.0

P
(X

)

This prior distribution P(X) reflects that robot is equally likely to be in any of the five locations on the
left, with a .2 probability of being in each.

Now assume that the robot takes a reading from its beacon-detector and the value is True. Figure
4.6 illustrates the steps of applying Bayes’ rule to calculate the posterior distribution. First, the prior
probability associated with each state P(xi) is multiplied by the value of the sensor model at that state

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

4.2 Discrete Probability Distributions 65

(a) (b) (c)

Figure 4.6: Using Bayes’ rule to update state estimates based on a sensor reading. (a) The bar graph on
the top represents the sensor model P(Z = True | X). The bar chart on the bottom represents the prior
distribution over the robot’s location P(x) The vertical arrows represent multiplication: the value of the
sensor model at each state is multiplied by the prior probability for the corresponding state. (b) The
resulting products. Note that these values do not sum to one. (c) The values at each state re-scaled (or
normalized) to make the total sum to 1. The result is the posterior probability distribution P(X | Z)

P(Z = True | X = xi). The resulting values are then re-scaled to sum to one.

Let’s do a detailed run-through through of the example in Figure 4.6 to see how the steps follow from
the application of Bayes’ rule. Bayes’ rule may be used to calculate the posterior probability that
the robot is in any particular state. For example, calculating the posterior for state 1 looks like the
following:

P(X = 1 | Z = True) = αP(Z = True | X = 1)P(X = 1)

Substituting P(Z = True | X = 1) = 0.0625 from the sensor model and P(X = 1) = .2 from the prior
distribution yields:

P(X = 1 | Z = True) = α(0.0625× .2) = 0.0125α

This calculation is repeated for all values of X :

P(X = 1 | Z = True) = α(0.0625× .2) = 0.0125α
P(X = 2 | Z = True) = α(0.0125× .2) = 0.025α
P(X = 3 | Z = True) = α(0.25× .2) = 0.05α
P(X = 4 | Z = True) = α(0.5× .2) = 0.1α
P(X = 5 | Z = True) = α(1.0× .2) = 0.2α
P(X = 6 | Z = True) = α(0.5×0) = 0

...

All that remains is to determine α by solving for the value that makes the total probability sum to
1:

0.0125α +0.025α +0.05α +0.1α +0.2α = 1.0

α ≈ 2.581

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

66 Chapter 4. Probabilistic Localization

Substituting 2.581 for α gives us the final posterior probability distribution across states:

P(X = 1 | Z = True) = 0.0125α ≈ 0.0323

P(X = 2 | Z = True) = 0.025α ≈ 0.0645

P(X = 3 | Z = True) = 0.05α ≈ 0.1290

P(X = 4 | Z = True) = 0.1α ≈ 0.2581

P(X = 5 | Z = True) = 0.2α ≈ 0.5161

P(X = 6 | Z = True) = 0

...

4.3 Recursive State Estimation
We now have the tools to formalize the central computational problem raised in this Chapter. The
fundamental goal in robot localization is to estimate a robot’s position based on the full history of
sensor readings and actions taken by the robot. This can be expressed as follows:

Bel(Xt) = P(Xt |U0,Z0, U1,Z1, ..., Ut ,Zt) (4.8)

where the subscripts indicate discrete time intervals and the U variables represent the action choices
made by the robot at each time step. According to this definition, the belief state Bel(Xt) is defined
to be conditional distribution over the robot’s location at time step t given full history of actions and
sensor readings leading up to time t.

We are already halfway to the solution. At the beginning of this Chapter we claimed that keeping track
of a robot’s location involves two sources of information: sensor data and dead reckoning. As we’ve
seen above, Bayes’ rule exactly solves the problem of incorporating sensor data to update our beliefs
about the robot’s location.

In order to incorporate dead reckoning we need a probabilistic model of how the robot’s actions impact
its state. This can be expressed with the following conditional probability distribution:

P(Xt | Xt−1,Ut)

This distribution is often described as the motion model for the robot. Notice that this formulation
involves an implicit conditional independence assumption in that the state distribution at time step t
only depends on the most recent state and action. Expressed formally, we are assuming that:

P(Xt | Xt−1,Ut) = P(Xt | Xt−1,Ut ,Xt−2,Ut−1, ...,X0,U1) (4.9)

This is called the Markov assumption. This assumption may be expressed in English as “The future
is independent of the past given the present.”

The Markov assumption is key to developing a tractable algorithm for tracking the belief state. At first
glance, the formulation of the localization problem in Equation 4.8 should be worrying. The history
of sensor readings and action choices will continue to grow without bound over time. This raises the
concern that the computational cost of maintaining our belief state will also continue to grow as we

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

4.3 Recursive State Estimation 67

accumulate more and more history that needs to taken into account. The Markov assumption provides
a way out of that dilemma.

The full recursive state estimation algorithm can be expressed as follows:

Bel−(Xt) = ∑
xi∈Xt−1

P(Xt | Xt−1 = xi, Ut)Bel(Xt−1 = xi) (Prediction) (4.10)

Bel(Xt) = αP(Zt | Xt−1)Bel−(Xt) (Correction) (4.11)

In the prediction stage, we update the belief state based on the robot’s latest action by applying the
total probability theorem (Equation 4.6) to the motion model to sum across all possible values for the
previous state. The − superscript indicates that the result is the estimated belief state before information
about any sensor readings has been incorporated. This is referred to as the “prediction” step because
we are predicting where the robot is likely to end up based on the action it selected.

In the correction stage we apply Bayes’ rule to update the belief state based on the latest sensor reading,
exactly as was discussed in the previous section. This is referred to as the “correction” step because we
are revising our prediction by incorporating the latest sensor information.

These two stages alternate indefinitely, with the belief state calculated at each time step serving as the
prior belief state for the next time step. Assuming that the Markov assumption is correct, and that the
motion and sensor models are accurate, this algorithm correctly tracks the probability distribution over
the robot’s location over time.

One thing to keep in mind is that a perfect localization algorithm doesn’t give us perfect information
about the location of the robot. Our knowledge of the robot’s location is fundamentally limited by
the uncertainty in our sensor model, the uncertainty in our motion model, and our uncertainty about
the robot’s initial location when localization began. What we can guarantee is that the recursive
state estimation algorithm above gives the best possible estimate given these various sources of
uncertainty.

Prediction Example

Figure 4.7 illustrates the process of applying the prediction formula. In the motion model for this
example, there are three possible outcomes when the robot attempts to move to the right: There is a
60% chance that the action works as expected and the robot moves one cell to the right. There is a 20%
chance that the action fails and the robot stays in the same location, and there is a 20% chance that the
robot overshoots and moves two positions to the right.

Figure 4.7(a) illustrates the calculation for just state 5. Given this motion model, there are three possible
ways the robot could end up in state 5: it could start in state 3 and overshoot, it could start in state 4
with the expected outcome, or it could start in state 5 and fail to move. The prediction formula sums
across these three possibilities:

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

68 Chapter 4. Probabilistic Localization

51 10
Bel(Xt-1)
Bel-(Xt)

(a)
51 10

(b)

Figure 4.7: Using the prediction formula to update the belief state based on the motion model. (a) Each
arrow represents a term in the sum for Bel−(Xt = 5). (b) The final belief distribution after all sums
have been calculated.

Bel−(Xt = 5) = ∑
xi∈Xt−1

P(Xt = 5 | Xt−1 = xi, Ut = Right)Bel(Xt−1 = xi)

=P(Xt = 5 | Xt−1 = 3, Ut = Right)Bel(Xt−1 = 3) +

P(Xt = 5 | Xt−1 = 4, Ut = Right)Bel(Xt−1 = 4) +

P(Xt = 5 | Xt−1 = 5, Ut = Right)Bel(Xt−1 = 5)

=(.2× .25)+(.6× .5)+(.2× .25)

=.4

The full belief prediction update involves repeating this calculation for each state. The result is
illustrated in figure 4.7(b)

4.3.1 Efficiency Considerations
The discrete, grid-based state representation assumed so far raises some of the same efficiency issues
that were discussed in Chapter 3. In particular, the space and computational requirements grow
exponentially with the dimensionality of the robot’s state. Two-dimensional localization may be
tractable, but once we add orientation and three-dimensional location, the problem quickly becomes
un-manageable. There is also a trade-off between the granularity of the discretization and the precision
of localization. Finer granularity may result in better localization, but only at the expense of additional
computational cost.

In practice, it is common to use one of two alternative formulations of the recursive state estimation
algorithm described above: the Kalman filter or the particle filter.

4.4 Kalman Filter
The overall form of the Kalman filter algorithm is the same as the recursive state estimation algorithm
described above: There is a prediction phase in which the state estimate is projected forward through
time, followed by a correction phase in which the state estimate is updated according to the latest sensor
reading. The difference is that the Kalman filter uses an alternative representation of the belief state,
and makes some strong assumptions about the form of the motion and sensor models:

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

4.4 Kalman Filter 69

• The belief state is represented as a multi-variate normal distribution.
• The state update and sensor models must be linear.
• The noise in both the motion and sensor models must be described by multi-variate normal

distributions.

If these assumptions are satisfied, the Kalman filter provides an efficient and optimal localization
algorithm.

4.4.1 Linear State Dynamics
As an example, consider the following system of difference equations that describe the motion of an
object moving at a fixed velocity in two dimensions:

xt+1 = xt + ẋtdt
yt+1 = yt + ẏtdt
ẋt+1 = ẋt

ẏt+1 = ẏt

In these equations xt and yt represent the x and y coordinates of the object at time t, ẋt and ẋt represent
the instantaneous velocity, and dt represents the time interval between updates. The first two equations
describe the motion of the object, while the second two equations simply describe the fact that the
velocity remains constant over time.

This system can be described more concisely by representing the state information as a vector, and the
series of difference equations as the matrix product:

xt+1 = Fxt

Where xt represents the state vector and F is a matrix that describes the update equations:

xt =

xt

yt

ẋt

ẏt

, F =

1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

We may also want to represent the fact that there it is possible to apply a control signal to the object.
For example, we could update our update equations with terms representing an application of force that
impacts the objects velocity:

xt+1 = xt + ẋtdt
yt+1 = yt + ẏtdt
ẋt+1 = ẋt + ẍtdt
ẏt+1 = ẏt + ÿtdt

We can incorporate this control signal by adding an additional term to our linear state update equa-
tion:

xt+1 = Fxt +But

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

70 Chapter 4. Probabilistic Localization

where

ut =

�
ẍt

ÿt

�
, F =

0 0
0 0
dt 0
0 dt

.

Finally, we need to take into account that the motion model should not be completely deterministic. We
don’t expect any model to make perfect predictions in a real-world system. The Kalman filter works
under the assumption that system noise is normally distributed. We can incorporate noise by adding
one final term to our state update equation:

xt = Fxt−1 +But−1 +wt−1 (4.12)

Where w is a random vector drawn from a normal distribution with mean zero and covariance Q:

w ∼N (0,Q)

4.4.2 Linear Sensor Model
The sensor model for a Kalman filter is also represented by a linear model corrupted with normally-
distributed noise. The sensor model has the following form:

zt = Hxt +vt (4.13)

Where zt represents the observed sensor reading and vt ∼ N (0,R) represents normally distributed
sensor noise with covariance R.

Continuing the example from above, we will assume that we have access to a sensor that provides
estimates about the coordinates of the object, but doesn’t provide any direct information about the
velocity. In this case, we have

H =

�
1 0 0 0
0 1 0 0

�

4.4.3 Kalman Filter Algorithm
The Kalman filter stores the belief state as a normal distribution. The mean of the distribution x̂
represents the current best estimate of the system state, while the covariance P represents the amount
(and shape) of the current uncertainty. As with the recursive state estimation algorithm described in
Section 4.3, the algorithm proceeds in two stages: a prediction stage, followed by a correction stage.
Again, the − superscript indicates that the result is the estimated belief state before sensor readings
have been incorporated. The full algorithm is outlined in Figure 4.8.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

4.4 Kalman Filter 71

Inputs: Initial state estimate x̂0 and covariance P0.

• Repeat forever:
– Prediction

* Project the state forward according to the motion model:

x̂−t = F x̂t−1 +But−1 (4.14)

* Project the covariance of the state estimate forward:

P−
t = FPt−1FT +Q (4.15)

– Correction
* Compute the Kalman gain:

Kt = P−
t HT (HP−

t HT +R)−1 (4.16)

* Use the sensor reading to update the state estimate:

x̂t = x̂−t +Kt(zt −Hx̂−t) (4.17)

* Update the covariance of the state estimate:

Pt = P−
t −KtHP−

t (4.18)

Figure 4.8: Kalman filter algorithm.

(a) (b)

Figure 4.9: Kalman filter example. (a) Prediction phase: The state estimate is updated according
to the linear motion model. The solid circle represents the initial uncertainty, while the dotted circle
represents the increased uncertainty based on the known noise in the motion model. (b) Correction
phase:. The state prediction is adjusted in the direction of the sensor reading. The uncertainty in the
estimate decreases as a result of incorporating the sensor information.

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

72 Chapter 4. Probabilistic Localization

The prediction phase of the algorithm updates the state estimate according to the motion model
(Equation 4.14) and increases the estimated uncertainty according the noise in the motion model
(Equation 4.15). This is illustrated in 4.9.

The correction phase involves updating the state estimate to account for the most recent sensor reading.
Equation 4.17 can be understood as taking a weighted average between the prediction estimate and the
estimate that is suggested by the latest sensor value. The Kalman gain, calculated in Equation 4.16,
represents the optimal trade-off between those two sources of information. Intuitively, the Kalman filter
places a higher weight on the sensor when the sensor noise is low relative to the uncertainty in the state
estimate. Conversely, the Kalman filter places less weight on the sensor reading if the sensor noise is
high relative to the current uncertainty. Put another way: the Kalman filter puts more trust in the more
reliable source of information.

4.5 References and Further Reading
The mathematical foundations of probability theory are too broad and varied to survey here. Many of
the key formalisms were developed by Pierre-Simon Laplace in the early 19th century.

General artificial intelligence textbooks such as (Russell & Norvig, 2010) and (Poole & Mackworth,
2017) provide an introduction to probabilistic modeling and reasoning as computational tools. The
standard reference for the application of probabilistic algorithms in robotics is (Thrun et al., 2005),
which provides much more detail on all of the algorithms discussed in this chapter.

The Kalman filter was introduced by R.E. Kalman in 1960 (Kalman, 1960). Greg Welch and Gary
Bishop published a popular tutorial introduction that provides a concise overview of the algorithm
along with a derivation (Welch & Bishop, 1995).

A history and overview of the particle filtering algorithm is provided by (Godsill, 2019), which attributes
key steps in its development to Adrian Smith’s research group at Imperial College London in the 1990’s
(Smith & Gelfand, 1992).

v-1.2 ©2023 Nathan Sprague. Creative Commons BY-NC 4.0.

