
Probability



Probability and Robotics

What will probability allow us to do?

I Update our existing beliefs on the basis of new sensor data
I Combine multiple (conflicting) sources of information
I Combine uncertain predictive models with noisy sensor data to

obtain better state estimats than either source alone could
provide

Today we will focus 1.



Probability Notation

I Probability Functions/Distributions:
I P(A) is a function that maps from all possible values of A to

the probability of the corresponding event.
I Examples:

I P(A = True) = .9
P(A = False) = .1

I P(B = red) = .8
P(B = blue) = .1
P(B = green) = .1



Sample Spaces and Joint Probability Distributions

I Sample space is the set of all possible outcomes.
I The full joint probability distribution assigns a probability to

each element of the sample space:
I S - Squished, U - Under falling Piano

S U P(S,U)
T T .008
T F .002
F T .001
F F .989



Conditional Probability

I P(A | B) Expresses the probability of assignments to A given
assignments to B.
I P(SQUISHED = True) = .01
I P(SQUISHED = True | UNDER_PIANO = True) ≈ .89

P(A | B) = P(A ∩ B)
P(B)



Bayes Rule

P(A | B) = P(B | A)P(A)
P(B)

Very handy for updating our beliefs on the basis of evidence.



Bayes Rule Example

I Robot is in a simple four room maze, rooms are labeled a-d.
I Initially, we think he is most likely to be in the left half,

P(X = a) = .4, P(X = b) = .4, . . .
a b c d
.4 .4 .1 .1



Bayes Rule Example

I Robot has a sensor designed to tell him what room he is in.
I Sensor is not perfect: only 80% likely to report he is in the

correct room. 20% of the time the sensor is off by one. (Errors
at the edge wrap around.)

I Distribution of sensor readings when robot is in a:
a b c d
.8 .1 0 .1

I In probability notation, where X is the position and Z is sensor
reading.
I P(Z = a | X = a) = .8

P(Z = b | X = a) = .1
P(Z = c | X = a) = 0
P(Z = d | X = a) = .1



Bayes Rule Example

I Given that we have a sensor model, Baye’s rule enables us to
update our prior beliefs based on sensor input:

P(X | Z ) = P(Z | X )P(X )
P(Z )



Bayes Rule Example

I Let’s calculate P(X = a | Z = b)

P(X = a | Z = b) = P(Z = b | X = a)P(X = a)
P(Z = b)

I P(Z = b | X = a) = .1 (From our sensor model)
I P(X = a) = .4 (Our prior)
I P(Z = b) (??)



Bayes Rule Example

To calculate P(Z = b), we can use the total probability theorem:

P(Z ) =
N∑
i

P(X = xi)P(Z | X = xi)

We can also treat P(Z ) as an unknown constant,

P(X | Z ) = αP(Z | X )P(X )

and set it to whatever value makes P(X | Z ) sum to 1. The two
approaches are equivalent.



Bayes Rule Example

Back to work. . .

P(X = a | Z = b) = P(Z = b | X = a)P(X = a)
P(Z = b)

= α× .1× .4 = .04α

Similarly:

P(X = b | Z = b) = α× .8× .4 = .32α

P(X = c | Z = b) = α× .1× .1 = .01α

P(X = d | Z = b) = α× 0× .1 = 0



Bayes Rule Example

Therefore, after our sensor reading, the updated distribution over
possible robot locations is:

a b c d
.04α .32α .01α 0

We know the robot is somewhere, so we know that:

.04α+ .32α+ .01α = 1

α = 1
.04 + .32 + .01 = 1/.37 ≈ 2.70



Bayes Rule Example

Finally, we have an updated belief about the robot location:

a b c d
.108 .865 .027 0

We may use this as our new prior, and incorporate additional sensor
readings.


