CS354

Nathan Sprague

September 28, 2023

(ロ)、(型)、(E)、(E)、 E) のQ(()

Monte-Carlo Localization aka Particle Filter

Figure 8.11 Monte Carlo Localization, a particle filter applied to mobile robot localization.

Probabilistic Robotics. Thrun, Burgard, Fox,

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Particle Filter Algorithm

- 1: procedure PARTICLE_FILTER_FOR_LOCALIZATION(X_{t-1}, u_t, z_t, m)
- 2: Inputs
- 3: \mathcal{X}_{t-1} The previous set of particles
- 4: u_t The control signal
- 5: z_t The sensor value
- 6: m The map
- 7: Output
- 8: \mathcal{X}_t The updated set of particles

9: for
$$m = 0$$
 to $M - 1$ do
10: $x_t^{[m]} = \text{sample_motion_model}(u_t, x_{t-1}^{[m]})$ > Predict
11: $w_t^{[m]} = \text{measurement_model}(z_t, x_t^{[m]}, m)$ > Correct
12: $\bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t \cup \{\langle x_t^{[m]}, w_t^{[m]} \rangle\}$
13: for $m = 0$ to $M - 1$ do > Resampling
14: draw *i* with probability $\propto w_t^{[i]}$
15: $\mathcal{X}_t = \mathcal{X}_t \cup \{\langle x_t^{[i]}, 1/M \rangle\}$

Based on Algorithm in Table 8.2 in Probabilistic Robotics. Thrun, Burgard, Fox, 2005

Sampling From the Motion Model

http://robots.stanford.edu/probabilistic-robotics/

Measurement Models for Laser Range Finders

•
$$w_t^{[m]} = p(z_t \mid x_t^{[m]}, m)$$

(Note that weights won't sum to one)

measurement noise:

unexpected obstacles:

random measurement:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

http://robots.stanford.edu/probabilistic-robotics/

Measurement Models for Laser Range Finders

•
$$w_t^{[m]} = p(z_t \mid x_t^{[m]}, m)$$

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{hit} \\ \alpha_{unexp} \\ \alpha_{max} \\ \alpha_{rand} \end{pmatrix}^T \cdot \begin{pmatrix} P_{hit}(z \mid x, m) \\ P_{unexp}(z \mid x, m) \\ P_{max}(z \mid x, m) \\ P_{rand}(z \mid x, m) \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

http://robots.stanford.edu/probabilistic-robotics/

 Not a good idea to run the particle filter while the robot is stationary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Resampling will deplete the set of particles
- May not be necessary to resample on every update.

Extracting a Single State Estimate

Possibilities:

- Average over all particles
- Cluster the algorithms, average within the "best" cluster

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Something fancier...