CS354

Nathan Sprague

September 21, 2023

State Estimation

- The goal is to estimate the state of the robot from a history of observations:

$$
\operatorname{Bel}\left(X_{t}\right)=P\left(X_{k} \mid Z_{1}, Z_{2}, \ldots, Z_{k}\right)
$$

- We make some (true-ish) simplifying assumptions:
- Markov Assumption:

$$
P\left(X_{k} \mid X_{1}, X_{2}, \ldots, X_{k-1}\right)=P\left(X_{k} \mid X_{k-1}\right)
$$

- Assumption that the current observation only depends on the current state:

$$
P\left(Z_{t} \mid X_{1}, Z_{1}, X_{2}, \ldots, Z_{t-1}, X_{t}\right)=P\left(Z_{t} \mid X_{t}\right)
$$

Probabilistic State Representations：Grid－Based

品品害品空
\dagger bel（x）

（e）
 $\stackrel{x}{x}$

Figure 8．1 Grid localization using a fine－grained metric decomposition．Each pic－ ture depicts the position of the robot in the hallway along with its belief $b e l\left(x_{t}\right)$ ， represented by a histogram over a grid．

Probabilistic Robotics．Thrun，Burgard，Fox， 2005

The Answer! Recursive State Estimation

- Two Steps:
- Prediction based on system dynamics:

$$
\operatorname{Bel}^{-}\left(X_{t}\right)=\sum_{x_{t-1} \in X} P\left(X_{t} \mid x_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right)
$$

- Correction based on sensor reading:

$$
\operatorname{Bel}\left(X_{t}\right)=\eta P\left(Z_{t} \mid X_{t}\right) \operatorname{Bel}^{-}\left(X_{t}\right)
$$

Repeat forever.
Again η is a normalizing constant chosen to make the distribution sum to 1 .

Prediction Example

- The robot is now moving Right! (or trying to)

■ Motion model: Robot is 80% likely to move the direction he intends to move. 20% likely to fail and not move.

- Assume we know that the robot starts in position a, $\operatorname{Bel}\left(X_{0}\right)=$

a	b	c	d
1	0	0	0

- Or:
$\operatorname{Be}\left(\left(X_{0}=a\right)=1\right.$
$\operatorname{Be}\left(X_{0}=b\right)=0$

Prediction Example

- Run one step of prediction:

$$
\begin{array}{r}
\operatorname{Bel}^{-}\left(X_{1}=a\right)=\sum_{x_{0} \in X} P\left(x_{1}=a \mid x_{0}\right) \operatorname{Bel}\left(x_{0}\right) \\
=P\left(X_{1}=a \mid X_{0}=a\right) \operatorname{Be}\left(\left(X_{0}=a\right)+\right. \\
P\left(X_{1}=a \mid X_{0}=b\right) \operatorname{Bel}\left(X_{0}=b\right)+ \\
P\left(X_{1}=a \mid X_{0}=c\right) \operatorname{Bel}\left(X_{0}=c\right)+ \\
P\left(X_{1}=a \mid X_{0}=d\right) \operatorname{Bel}\left(X_{0}=d\right) \\
=.2 \times 1+0 \times 0+0 \times 0+.8 \times 0 \\
=.2
\end{array}
$$

Prediction Example

- Similarly

$$
\begin{aligned}
& \operatorname{Bel}^{-}\left(X_{1}=b\right)=.8 \times 1+.2 \times 0+0 \times 0+0 \times 0=.8 \\
& \operatorname{Bel}^{-}\left(X_{1}=c\right)=0 \\
& \operatorname{Bel}^{-}\left(X_{1}=d\right)=0
\end{aligned}
$$

■ Unsurprisingly, $\operatorname{Bel}^{-}\left(X_{1}\right)=$

a	b	c	d
.2	.8	0	0

Estimation

Now that we have a prediction, we can update it based on the latest sensor reading:

$$
\operatorname{Bel}\left(X_{t}\right)=\eta P\left(Z_{t} \mid X_{t}\right) \operatorname{Be}^{-}\left(X_{t}\right)
$$

This is exactly what we did when we talked about using Bayes rule to update a prior state estimate based on a sensor reading.

The process is then repeated indefinitely.

