CS354

Nathan Sprague

September 26, 2023

Probabilistic State Representations: Continuous

(a)

(b)

(c)

Probabilistic Robotics. Thrun, Burgard, Fox, 2005
(d)

Figure 7.6 Application of the Kalman filter algorithm to mobile robot localization All densities are represented by unimodal Gaussians.

Combining Evidence

■ Imagine two independent measurements of some unknown quantity:

- x_{1} with variance σ_{1}^{2}
- x_{2} with variance σ_{2}^{2}

■ How should we combine these measurements?

Combining Evidence

■ Imagine two independent measurements of some unknown quantity:

- x_{1} with variance σ_{1}^{2}
- x_{2} with variance σ_{2}^{2}

■ How should we combine these measurements?

- We can take a weighted average:
$■ \hat{x}=\omega_{1} x_{1}+\omega_{2} x_{2} \quad\left(\right.$ where $\left.\omega_{1}+\omega_{2}=1\right)$
■ What should the weights be???

Combining Evidence

■ Imagine two independent measurements of some unknown quantity:

- x_{1} with variance σ_{1}^{2}
- x_{2} with variance σ_{2}^{2}

■ How should we combine these measurements?

- We can take a weighted average:
$\square \hat{x}=\omega_{1} x_{1}+\omega_{2} x_{2} \quad\left(\right.$ where $\left.\omega_{1}+\omega_{2}=1\right)$
■ What should the weights be???
- We want to find weights that minimize variance (uncertainty) in the estimate:
- $\sigma^{2}=E\left[(\hat{x}-E[\hat{x}])^{2}\right]$

Combining Evidence - Solution

(Derivation not shown...)

$$
\begin{gathered}
\hat{x}=\frac{\sigma_{2}^{2} x_{1}+\sigma_{1}^{2} x_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \\
\sigma^{2}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{gathered}
$$

Updating an Existing Estimate

Let's reinterpret x_{1} to be the old state estimate and σ_{1}^{2} to be the variance in that estimate. Now x_{2} represents a new sensor reading. After some algebra...

$$
\begin{gathered}
\hat{x}=x_{1}+\frac{\sigma_{1}^{2}\left(x_{2}-x_{1}\right)}{\sigma_{1}^{2}+\sigma_{2}^{2}} \\
\sigma^{2}=\sigma_{1}^{2}-\frac{\sigma_{1}^{2} \sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
\end{gathered}
$$

Let $k=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}$, these become...

$$
\begin{gathered}
\hat{x}=x_{1}+k\left(x_{2}-x_{1}\right) \\
\sigma^{2}=\sigma_{1}^{2}-k \sigma_{1}^{2}
\end{gathered}
$$

1D Kalman Filter

$k=\frac{\sigma_{t-1}^{2}}{\sigma_{t-1}^{2}+\sigma_{\mathbf{z}}^{2}}$, these become...

$$
\begin{gathered}
\hat{x}_{t}=\hat{x}_{t-1}+k\left(z_{t-1}-\hat{x}_{t-1}\right) \\
\sigma_{t}^{2}=\sigma_{t-1}^{2}-k \sigma_{t-1}^{2}
\end{gathered}
$$

Vector-Valued State

■ Kalman filter generalizes this to multivariate data and allows for state dynamics that are influenced by a control signal.

- We may also be combining evidence from multiple sensors
- Sensor fusion

Linear System Models

- State can include information other than position. E.g. velocity.
■ Linear model of an object moving with a fixed velocity in 2d:
- $x_{t+1}=x_{t}+\dot{x}_{t} d t$
- $y_{t+1}=y_{t}+\dot{y}_{t} d t$
- $\dot{x}_{t+1}=\dot{x}_{t}$
- $\dot{y}_{t+1}=\dot{y}_{t}$

■ $d t$ is time.

- \dot{x}_{t} is velocity along the x axis.

Linear System Model in Matrix Form

This is equivalent to the last slide:

$$
\begin{gathered}
\mathbf{x}_{t}=\left[\begin{array}{l}
x_{t} \\
y_{t} \\
\dot{x}_{t} \\
\dot{y}_{t}
\end{array}\right] \\
\mathbf{F}=\left[\begin{array}{cccc}
1 & 0 & d t & 0 \\
0 & 1 & 0 & d t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{x}_{t+1}=\mathbf{F x}_{t}
\end{gathered}
$$

Kalman Filter

- Assumes:
- Linear state dynamics
- Linear sensor model
- Normally distributed noise in the state dynamics
- Normally distributed noise in the sensor model

■ State Transition Model:
■ $\mathbf{x}_{t}=\mathbf{F x}_{t-1}+\mathbf{B u} \mathbf{u}_{t-1}+\mathbf{w}_{t-1}$
$■ \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ (Normal distribution with mean 0 and covariance \mathbf{Q})

- Sensor Model:

■ $\mathbf{z}_{t}=\mathbf{H} \mathbf{x}_{t}+\mathbf{v}_{t}$

- $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$

Full Example For 2d Constant Velocity

State Transition Model:

$$
\mathbf{F}=\left[\begin{array}{cccc}
1 & 0 & d t & 0 \\
0 & 1 & 0 & d t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{Q}=\left[\begin{array}{cccc}
.01 & 0 & 0 & 0 \\
0 & .01 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Sensor Model (sensor readings based only on position):

$$
\mathbf{H}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{cc}
.05 & 0 \\
0 & .05
\end{array}\right]
$$

Kalman Filter in One Slide

- Predict:

Project the state forward:

$$
\hat{\mathbf{x}}_{t}^{-}=F \hat{\mathbf{x}}_{t-1}+B \mathbf{u}_{t-1}
$$

Project the covariance of the state estimate forward:

$$
\mathbf{P}_{t}^{-}=F \mathbf{P}_{t-1} F^{T}+\mathbf{Q}
$$

- Correct:

Compute the Kalman gain:

$$
\mathbf{K}_{t}=\mathbf{P}_{t}^{-} H^{\top}\left(H \mathbf{P}_{t}^{-} H^{T}+\mathbf{R}\right)^{-1}
$$

Update the estimate with the measurement:

$$
\hat{\mathbf{x}}_{t}=\hat{\mathbf{x}}_{t}^{-}+\mathbf{K}_{t}\left(\mathbf{z}_{t}-H \hat{\mathbf{x}}_{t}^{-}\right)
$$

Update the estimate covariance:

$$
\mathbf{P}_{t}=\mathbf{P}_{t}^{-}-\mathbf{K}_{t} H \mathbf{P}_{t}^{-}
$$

Extended Kalman Filter

■ What if the state dynamics and/or sensor model are NOT linear?

- State Transition Model:

■ $\mathbf{x}_{t}=f\left(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}\right)+\mathbf{w}_{t-1}$
■ Sensor Model:

$$
\square \mathbf{z}_{t}=h\left(\mathbf{x}_{t}\right)+\mathbf{v}_{t}
$$

Jacobian

The Jacobian is the generalization of the derivative for vector-valued functions:

$$
\begin{aligned}
& \mathbf{J}=\frac{d \mathbf{f}}{d \mathbf{x}}=\left[\begin{array}{lll}
\frac{\partial \mathbf{f}}{\partial x_{1}} & \cdots & \frac{\partial \mathbf{f}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right] \\
& \mathbf{J}_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
\end{aligned}
$$

tex borrowed from Wikipedia

Extended Kalman Filter

- As long as f and h are differentiable, we can still use the (Extended) Kalman filter.
■ Basically, we just replace the state transition and sensor update matrices with the corresponding Jacobians.

