
Name:

With Help From:

CS354 HW#3, Fall 2023

1. The figure below illustrates a robotic cart. The cart can move to the left or right, and can
change the angle of the attached pole. The angle of the pole is indicated by θ, where θ = 0
when the pole is rotated all the way to the right and θ = π when the pole is rotated all the
way to the left. The green dot is a goal location for the pole end-point and the hashed box
is an obstacle.

� Draw the configuration space for this robot, with x on the horizontal axis and θ on the
vertical axis. Draw Cobs as a shaded region. (6pts)

� Draw a valid path in your configuration space from the robot’s current configuration to
the goal configuration. (2pts)

� Redraw the configuration space by approximating the robot and the obstacle using
minimum bounding circles. Is it still possible to find a path to the goal using this
approximation? (3pts)

1



For each of the questions below, complete the table, then complete the corresponding search
method from discrete planners.py (which depends on priority queue.py). You should be able
to check your written answers by executing the corrsponding search. Submit your completed
discrete planners.py through Canvas when you submit your answers. You can also check the
correctness of your planning implementations using test discrete planners.py.

2. Consider the following graph:

a b c

d e f

g h i

3

2

1

6

1 1

2 1

1

4

1 1

Complete the table below to show the state of a DFS search starting at state g with the goal
at state a. The tuples in the Frontier column represent Node objects where the first entry
is the state and the second entry is the state associated with the parent node. Assume that
successors are accessed in alphabetical order. The first three steps are completed for you.

Expansions Chosen Frontier Closed Set

0 – ⟨g, –⟩ –

1 g ⟨d, g⟩, ⟨h, g⟩ {g}
3 h ⟨d, g⟩, ⟨e, h⟩, ⟨i, h⟩ {g, h}
3

4

5

6

7

What is the final path discovered by DFS? (You should be able to reconstruct it by working
backward through the parent entries starting from the point where a is selected from the
frontier.)

2

https://w3.cs.jmu.edu/spragunr/CS354/hw/planning_hw/code/discrete_planners.py
https://w3.cs.jmu.edu/spragunr/CS354/hw/planning_hw/code/priority_queue.py
https://w3.cs.jmu.edu/spragunr/CS354/hw/planning_hw/code/test_discrete_planners.py


3. Repeat the previous exercises for a BFS search.

Expansions Chosen Frontier Closed Set

0 – –

1

3

3

4

4. Complete the table below to show the state of Dijkstra’s algorithm after each expansion.
Again the start state is g and the goal state is a. Break priority ties using alphabetical
order. I.e. in the case of a tie, state a will selected before state b. The tuples in the Frontier
column represent Node objects where the first entry is the state, the second entry is the state
associated with the parent node and the third entry is the path cost to reach the state. The
first three steps are completed for you.

Expansions Chosen Frontier Closed Set

0 – ⟨g, –, 0⟩ –

1 g ⟨d, g, 6⟩, ⟨h, g, 1⟩ {g}
3 h ⟨d, g, 6⟩, ⟨e, h, 3⟩, ⟨i, h, 2⟩ {g, h}
3

4

5

6

7

8

What final path is returned? What is the path cost?

3



5. Repeat the previous question using an A* search. Use the Manhattan distance to the goal as
the heuristic function. For this problem, the fourth value in the Frontier tuples will represent
f(s) = c(s) + h(s). The first three expansions are done for you.

Expansions Chosen Frontier Closed Set

0 – ⟨g, –, 0, 2⟩ –

1 g ⟨d, g, 6, 7⟩, ⟨h, g, 1, 4⟩ {g}
3 h ⟨d, g, 6, 7⟩, ⟨e, h, 3, 5⟩, ⟨i, h, 2, 6⟩ {g, h}
3

4

5

4


