CS239

Nathan Sprague

March 20, 2012

Reading Quiz (1/3)

Which of the following is the best definition of a recursive method?
1 A method is recursive if it is defined in a superclass as well as an implemented interface.
2 A method is recursive if it is both inherited and static.
3 A method is recursive if it includes a call to itself.

Reading Quiz (2/3)

Which of the following methods will result in an error when called?

```
public static void reci(int n) {
    if ( }\textrm{n}==0\mathrm{ )
        System.out.println("Zero!");
    else
        System.out.println(n);
    rec1(n - 1);
}
```

```
public static void rec2(int n) {
```

public static void rec2(int n) {
if (n == 0)
if (n == 0)
System.out.println("Zero!");
System.out.println("Zero!");
else
else
{
{
System.out.println(n);
System.out.println(n);
rec2(n - 1);
rec2(n - 1);
}
}
}

```
}
```

```
public static void rec3(int n) {
    if ( }\textrm{n}==0\mathrm{ )
        System.out.println("Zero!");
    else
        System.out.println("Not Zero!");
}
```


Reading Quiz (3/3)

Which of the following is a correct definition of the factorial function?

- $n!=n^{n-1}$

■ if $n=0$ then $n!=1$
if $n>0$ then $n!=n \times(n-1)$!
■ if $n=0$ then $n!=1$
if $n>0$ then $n!=n!$

Recursive Definitions

Merriam Websters definition of Ancestor:

Ancestor

One from whom a person is descended [...]
Here is a recursive version:
Ancestor
One's parent.
or
The parent of one's ancestor.

Recursively Defined Functions

Classic example is the factorial function:
$n!$
if $n=0$ then $n!=1$ (basis or initial conditions)
if $n>0$ then $n!=n \times(n-1)$!

Recursive Methods / Recursive Programming

A recursive method is a method that includes a call to itself. It is often straightforward to compute recursively defined functions using recursive methods:

```
int factorial(int n)
{
    int value;
    if (n == 0)
        value = 1;
    else
        value = n * factorial(n - 1);
    return value;
}
```


Activation Records

Every method call results in an activation record which contains:

- Local variables and their values.
- The location (in the caller) of the call.

Tracing Recursive Methods...

Recursion is Not Always the Best Approach

```
int factorial(int n)
{
    int value = 1;
    for (int i=2; i <= n; i++)
    {
        value *= i;
        }
    return value;
}
```


Recursive Problem Solving

Recursion is often a good idea when a problem can be solved by breaking it into one or more smaller problems of the same form. The process is:

- Figure out how to solve the easy case.
- Figure out how to move the hard case toward the easy case.

Recursion Pseudocode

Nearly every recursive method ends up looking like the following:

The Coin Problem

Determine the minimum number of coins needed to make change for a given amount.

- The easy case:
- We can use a single coin.
- Reducing the hard case:
- Try every way of splitting the amount into two parts: j and amount - j
- recursively find minimum coin solution for each pair
- return the minimum.
(Note... this is really slow.)

