Nathan Sprague

March 20, 2012



Reading Quiz (1/3)

Which of the following is the best definition of a recursive method?
A method is recursive if it is defined in a superclass as well as
an implemented interface.
A method is recursive if it is both inherited and static.

A method is recursive if it includes a call to itself.



Reading Quiz (2/

O©OWONOO A WN - ~NOoOOAWN -

DO EWN =

Which of the following methods will result in an error when called?

public static void reci(int n) {

if (n == 0)
System.out.println("Zero!");
else

System.out.println(n);
reci(n - 1);

public static void rec2(int n) {

if (n == 0)
System.out.println("Zero!");

else

{

System.out.println(n);
rec2(n - 1);

public static void rec3(int n) {

if (n == 0)
System.out.println("Zero!");
else

System.out.println("Not Zero!");




Reading Quiz (3/3)

Which of the following is a correct definition of the factorial
function?

mnl=n"1

mifn=0thenn =1

if n>0then nl =nx(n—1)!
mifn=0thenn =1

if n> 0 then n! = n!



Recursive Definitions

Merriam Websters definition of Ancestor:

Ancestor

One from whom a person is descended |[...]

Here is a recursive version:

Ancestor

One's parent.
or
The parent of one's ancestor.



Recursively Defined Functions

Classic example is the factorial function:

if n =0 then n! =1 (basis or initial conditions)
if n> 0 then n! =nx (n—1)!




Recursive Methods / Recursive Programming

A recursive method is a method that includes a call to itself. It is
often straightforward to compute recursively defined functions
using recursive methods:

1 | int factorial(int n)

2 | {

3 int value;

4

5 if (n == 0)

6 value = 1;

7 else

8 value = n * factorial(m - 1);
9

-
o

return value;

—
—
[}




Activation Records

Every method call results in an activation record which contains:

m Local variables and their values.

m The location (in the caller) of the call.



Tracing Recursive Methods...



Recursion is Not Always the Best Approach

1 | int factorial(int n)

2 | {

3 int value = 1;

4

5 for (int i=2; i <= n; i++)
6 {

7 value *= 1i;

8 }

9

-
o

return value;

-
j
[}




Recursive Problem Solving

Recursion is often a good idea when a problem can be solved by
breaking it into one or more smaller problems of the same form.
The process is:

m Figure out how to solve the easy case.

m Figure out how to move the hard case toward the easy case.



Recursion Pseudocode

Nearly every recursive method ends up looking like the following:

1

2 | recursiveMethod (input)

3 14

4 if (input represents an easy case)

5 {

6 handle the easy case directly.

7 }

8 else

9 {

10 call recursiveMethod one or more times
11 passing it only part of the input.
12 }

13 |}




The Coin Problem

Determine the minimum number of coins needed to make change
for a given amount.
m The easy case:
m We can use a single coin.
m Reducing the hard case:

m Try every way of splitting the amount into two parts: j and
amount - j

m recursively find minimum coin solution for each pair
® return the minimum.

(Note... this is really slow.)



