
Name(s):__
Problem practice – Inheritance through Abstract Classes

Fill in the chart below with T or F depending on whether or not the
characteristic on the left can be applied to the class type or interface on the
top.

characteristic (non-
abstract)
super class

sub class abstract class

May only have
abstract methods.

F F F

May have one or
more abstract
methods

F F T

May have
instance variables

T T T

May have class
variables

T T T

May have class
constants

T T T

May have
concrete methods

T T T

May be extended
by another class

T T T

May be used to
declare object
reference
variables

T T F

Given the TwoPartMeasure, Weight, and Length classes from the lab and assuming
the following code, indicate which of the statements if present in main will compile
(C) or not compile (X). Indicate in the space underneath the reason for any
statement that will not compile.

/**
 * A driver that can be used to test
 * some aspects of the Length and Weight classes
 *
 * @author Nancy Harris
 * @version 1.0
 */
public class Driver3
{
 /**
 * The entry point of the application
 *
 * @param args The command line arguments
 */
 public static void main(String[] args)
 {
 TwoPartMeasure tpm;
 TwoPartMeasure[] tpmArray;
 Length myLength;
 Weight myWeight;

int units;

 tpmArray = new TwoPartMeasure[3];
myLength = new Length(12, 4);

 myWeight = new Weight(125, 3);

 // ... more code goes here
 }
}

C or X Statement in main
C 1. tpm = myLength;
X 2. tpm = new TwoPartMeasure(5, 3);
X 3. myLength = myWeight;
X 4. myLength = tpm;
C 5. tpmArray[0] = myWeight;
C 6. tpmArray[1] = new Length(3, 4);
X 7. tpmArray[2] = new TwoPartMeasure(5, 2, true);
C 8. units = myWeight.smallsPerLarge;
C 9. myWeight.initializeUnits();
X 10. units = myLength.toSmall();
C 11. myWeight.equals(myLength);
C 12. System.out.println(myWeight);
C 13. myWeight.changeBy(myLength);

Statement Rationale
2. TwoPartMeasure is abstract so cannot be instantiated.
3. Incompatible types.
4. Tpm has not been assigned a value. Even if it did have a value, it is not

possible to assign from a variable of type TwoPartMeasure to a variable of
type Length without a cast.

7. TwoPartMeasure is abstract so cannot be instantiated.
10. toSmall() is a private method of TwoPartMeasure.

Given the TwoPartMeasure, Weight, and Length classes, answer the
following:

1. Which data members of TwoPartMeasure are “visible” in Weight?
 smallsPerLarge, largeUnitsSingular, largeUnitsPlural, smallUnitsSingular, smallUnitsPlural

2. Which method members of TwoPartMeasure are “visible” in Weight?

All except toSmall().

3. Which method members of Weight are “visible” in TwoPartMeasure?

All are visible from TwoPartMeasure, in the same way they would be
visible to any other class in the same package.

4. If we changed the default constructor of Weight from what is listed in the
reference to this, would this class compile? Why or why not?

/**
 * Default Constructor
 */
 public Weight()
 {
 this(0, 0, true);
 }

It would compile. The original constructor calls the three-argument
superclass constructor directly. This constructor calls the three-
argument length constructor, which then calls the three-argument
superclass constructor.

5. If we wanted to create accessor methods for the large and small units,
where should they go (TwoPartMeasure, Weight, Length or some
combination)? What would one of the methods headers look like (large or
small)?

It makes the most sense to put them in TwoPartMeasure:

 public String getLargeUnitsSingular()
 {
 return largeUnitsSingular;
 }

 public String getSmallUnitsSingular()
 {
 return smallUnitsSingular;
 }

public abstract class TwoPartMeasure
 {
 private int large, sign, small;

 protected int smallsPerLarge;
 protected String largeUnitsSingular, largeUnitsPlural;
 protected String smallUnitsSingular, smallUnitsPlural;

 public TwoPartMeasure()
 {
 this(0, 0, true);
 }
 public TwoPartMeasure(int large, int small)
 {
 this(large, small, true);
 }
 public TwoPartMeasure(int large, int small, boolean positive)
 {
 this.large = Math.abs(large);
 this.small = Math.abs(small);

 this.sign = 1;
 if (!positive) this.sign = -1;

 initializeUnits();
 }
 public void changeBy(TwoPartMeasure other)
 {
 int otherTotal, thisTotal, total;

 otherTotal = other.toSmall();
 thisTotal = this.toSmall();

 total = thisTotal + otherTotal;

 large = total / smallsPerLarge;
 small = total % smallsPerLarge;
 }
 public boolean equals(TwoPartMeasure other)
 {
 boolean comparison;
 int otherTotal, thisTotal;

 thisTotal = this.toSmall();
 otherTotal = other.toSmall();

 comparison = false;
 if (thisTotal == otherTotal) comparison = true;

 return comparison;
 }

 protected abstract void initializeUnits();

 private int toSmall()
 {
 int total;

 total = sign * ((large * smallsPerLarge) + small);
 return total;
 }

 public String toString()
 {
 String s;

 s = new String();
 if (sign < 0) s += "Negative ";

 if (large == 1) s += large + " " + largeUnitsSingular;
 else s += large + " " + largeUnitsPlural;

 if (small == 1) s += " " + small + " " + smallUnitsSingular;
 else s += " " + small + " " + smallUnitsPlural;

 return s;
 }

 }

public class Length extends TwoPartMeasure
 {

 public Length()
 {
 super(0, 0, true);
 }

 public Length(int feet, int inches)
 {
 super(feet, inches, true);
 }

 public Length(int feet, int inches, boolean positive)
 {
 super(feet, inches, positive);
 }
 protected void initializeUnits()
 {
 smallsPerLarge = 12;

 largeUnitsSingular = "foot";
 largeUnitsPlural = "feet";

 smallUnitsSingular = "inch";
 smallUnitsPlural = "inches";
 }
 }

 public class Weight extends TwoPartMeasure
 {

 public Weight()
 {
 super(0, 0, true);
 }

 public Weight(int pounds, int ounces)
 {
 super(pounds, ounces, true);
 }

 public Weight(int pounds, int ounces, boolean positive)
 {
 super(pounds, ounces, positive);
 }
 protected void initializeUnits()
 {
 smallsPerLarge = 16;

 largeUnitsSingular = "pound";
 largeUnitsPlural = "pounds";

 smallUnitsSingular = "ounce";
 smallUnitsPlural = "ounces";
 }
 }

