Name(s):
Problem practice - Inheritance through Abstract Classes

Fill in the chart below with T or F depending on whether or not the
characteristic on the left can be applied to the class type or interface on the
top.

characteristic (non- sub class abstract class
abstract)
super class

May only have F F F
abstract methods.

May have one or F F T
more abstract
methods

May have
instance variables

May have class
variables

May have class
constants

—H - 4] 4

May have
concrete methods

—

May be extended
by another class

— 4 4 4 4 4

May be used to T
declare object
reference
variables

Given the TwoPartMeasure, Weight, and Length classes from the lab and assuming
the following code, indicate which of the statements if present in main will compile
(C) or not compile (X). Indicate in the space underneath the reason for any
statement that will not compile.

*

A driver that can be used to test
sone aspects of the Length and Wei ght cl asses

/

EE I

@ut hor Nancy Harris
* @ersion 1.0

*/

public class Driver3

{
/**

* The entry point of the application

* @aram ar gs The command |ine argunents
*/

public static void main(String[] args)

{

TwoPar t Measur e tpm
TwoPar t Measur e[] tpmArray;
Lengt h nyLengt h;
i ght ny\Wei ght ;

i nt units;

tpmArray = new TwoPart Measure[3];
nyLengt h = new Lengt h(12, 4);
nyWei ght = new Wei ght (125, 3);

/1 ... nore code goes here

-

or X | Statement in main

. tpm = myLength;

. tpm = new TwoPartMeasure(5, 3);

. myLength = myWeight;

. myLength = tpm;

. tpmArray[0] = myWeight;

tpmArray[l] = new Length(3, 4);

tpmArray[2] = new TwoPartMeasure(5, 2, true);

oo v h|w|N|-

. units = myWeight.smallsPerLarge;

9. myWeight.initializeUnits();

10. units = myLength.toSmall();

11. myWeight.equals(myLength);

12. System.out.printin(myWeight);

O O O X| O Of X| O O] X| X| X| O]

13. myWeight.changeBy(myLength);

Statement Rationale

2. TwoPartMeasure is abstract so cannot be instantiated.

3. Incompatible types.

4. Tpm has not been assigned a value. Even if it did have a value, it is not
possible to assign from a variable of type TwoPartMeasure to a variable of
type Length without a cast.

7. TwoPartMeasure is abstract so cannot be instantiated.

10. toSmall() is a private method of TwoPartMeasure.

Given the TwoPartMeasure, Weight, and Length classes, answer the
following:

1. Which data members of TwoPartMeasure are “visible” in Weight?

| smal | sPer Large, |argeUnitsSingular, |argeUnitsPlural, snallUnitsSingular, smallUnitsPlural

2. Which method members of TwoPartMeasure are “visible” in Weight?

All except tosmall().

3. Which method members of Weight are “visible” in TwoPartMeasure?

All are visible from TwoPartMeasure, in the same way they would be
visible to any other class in the same package.

4. If we changed the default constructor of Weight from what is listed in the
reference to this, would this class compile? Why or why not?

/**

* Default Constructor
*/

public Wi ght ()

{

}

It would compile. The original constructor calls the three-argument
superclass constructor directly. This constructor calls the three-
argument length constructor, which then calls the three-argument
superclass constructor.

this(0, 0, true);

5. If we wanted to create accessor methods for the large and small units,
where should they go (TwoPartMeasure, Weight, Length or some
combination)? What would one of the methods headers look like (large or
small)?

It makes the most sense to put them in TwoPartMeasure:

public String getLargeUnitsSingular()
{

}

return | argeUnitsSingul ar;

public String getSnmall UnitsSingular()
{

}

return smal | UnitsSingul ar;

public abstract class TwoPartMeasure

{
private int | arge, sign, small;
protected int snal | sPer Lar ge;
protected String | argeUni t sSi ngul ar, | argeUnitsPlural;
protected String smal | Uni t sSi ngul ar, snall UnitsPlural;

publ i c TwoPart Measure()
this(0, 0, true);

public TwoPart Measure(int large, int snall)

{
this(large, small, true);
public TwoPart Measure(int large, int small, bool ean positive)
{
this.large = Math. abs(l arge);
this.small = Math. abs(small);
this.sign =1
if (!positive) this.sign = -1;
initializeUnits();
}
public void changeBy(TwoPart Measure ot her)
{
i nt ot herTotal, thisTotal, total;
otherTotal = other.toSnall();
thisTotal = this.toSmall();
total = thisTotal + otherTotal;
large = total / snallsPerlLarge;
small = total % small sPerLarge;

publ i c bool ean equal s(TwoPart Measure ot her)

{
bool ean conpari son;
int ot herTotal, thisTotal;
thisTotal = this.toSmall();
otherTotal = other.toSnall();
conpari son = fal se;
if (thisTotal == otherTotal) conparison = true;
return conparison;
}

protected abstract void initializeUnits();

private int toSmall ()

{
int total;
total = sign * ((large * snallsPerLarge) + small);
return total;

}

public String toString()

{

String S;

s = new String();
if (sign <0) s += "Negative ";

if (large == 1) s += large + " " + largeUnitsSingul ar;
el se s += large + " " + largeUnitsPlural;
if (small ==1) s +=" " + small + " " + snall UnitsSingul ar;

el se s +=" " +smll +" " + small UnitsPlural;

return s;

public class Length extends TwoPart Measure

{
public Length()
{
super (0, O, true);
public Length(int feet, int inches)
super (feet, inches, true);
public Length(int feet, int inches, bool ean positive)
super (feet, inches, positive);
protected void initializeUnits()
{
smal | sPerLarge = 12;
| argeUni t sSi ngul ar = "foot";
| ar geUni t sPl ur al = "feet";
smal | Uni tsSingular = "inch";
smal | Uni t sPl ural = "inches";
}
}

public class Wi ght extends TwoPart Measure

{

public Weight ()

{
super (0, 0, true);

publ i c Weight (int pounds, int ounces)
{

super (pounds, ounces, true);

public Weight (int pounds, int ounces, boolean positive)

{

super (pounds, ounces, positive);

protected void initializeUnits()

{
smal | sPerLarge = 16
| argeUni t sSi ngul ar = "pound";
| ar geUni t sPl ur al = "pounds";
smal | Uni t sSi ngul ar = "ounce";
smal | Uni t sPl ural = "ounces";
}

