Trees Chapter 11

Chapter Summary

- Introduction to Trees
- Applications of Trees (not currently included in overheads)
- Tree Traversal
- Spanning Trees
- Minimum Spanning Trees (not currently included in overheads)

Introduction to Trees Section 11.1

Section Summary

- Introduction to Trees
- Rooted Trees
- Trees as Models
- Properties of Trees

Trees

Definition: A *tree* is a connected undirected graph with no simple circuits.

Example: Which of these graphs are trees?

Definition: A *forest* is a graph that has no simple circuits but is not connected. Each of the connected components in a forest is a tree.

Trees (continued)

Theorem: An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Rooted Trees

Definition: A *rooted tree* is a tree in which one vertex has been designated as the *root* and every edge is directed away from the root.

An unrooted tree is converted into different rooted trees when different vertices are chosen as the root.

- If v is a vertex of a rooted tree other than the root, the *parent* of v is the unique vertex u such that there is a directed edge from u to v. When u is a parent of v, v is called a *child* of u. Vertices with the same parent are called *siblings*.
- The ancestors of a vertex are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root. The descendants of a vertex v are those vertices that have v as an ancestor.
- A vertex of a rooted tree with no children is called a *leaf*. Vertices that have children are called *internal vertices*.
- If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.

Terminology for Rooted Trees

Example: In the rooted tree *T* (with root *a*):

- (i) Find the parent of c, the children of g, the siblings of h, the ancestors of e, and the descendants of b.
- (ii) Find all internal vertices and all leaves.
- (iii) What is the subtree rooted at *g*?

m-ary Rooted Trees

Definition: A rooted tree is called an *m*-ary tree if every internal vertex has no more than *m* children. The tree is called a *full m*-ary tree if every internal vertex has exactly *m* children. An *m*-ary tree with m = 2 is called a *binary* tree.

Example: Are the following rooted trees full *m*-ary trees for some positive integer *m*?

Properties of Trees

Theorem 2: A tree with *n* vertices has n - 1 edges.

Proof (by mathematical induction):

BASIS STEP: When n = 1, a tree with one vertex has no edges. Hence, the theorem holds when n = 1.

INDUCTIVE STEP: Assume that every tree with k vertices has k - 1 edges. Suppose that a tree T has k + 1 vertices and that v is a leaf of T. Let w be the parent of v. Removing the vertex v and the edge connecting w to v produces a tree T' with k vertices. By the inductive hypothesis, T' has k - 1 edges. Because T has one more edge than T', we see that T has k edges. This completes the inductive step.

Counting Vertices in Full *m*-Ary Trees

Theorem 3: A full *m*-ary tree with *i* internal vertices has n = mi + 1 vertices.

Proof : Every vertex, except the root, is the child of an internal vertex. Because each of the *i* internal vertices has *m* children, there are *mi* vertices in the tree other than the root. Hence, the tree contains n = mi + 1 vertices.

Counting Vertices in Full *m*-Ary Trees (*continued*)

Theorem 4: A full *m*-ary tree with

- (*i*) n vertices has i = (n 1)/m internal vertices and l = [(m - 1)n + 1]/mleaves,
- (*ii*) *i* internal vertices has n = mi + 1 vertices and l = (m - 1)i + 1 leaves,
- (iii) / leaves has n = (ml 1)/(m 1)vertices and i = (l - 1)/(m - 1)internal vertices.

These all follow from the fact that n = l + i and n = mi + 1

Level of vertices and height of trees

- When working with trees, we often want to have rooted trees where the subtrees at each vertex contain paths of approximately the same length.
- To make this idea precise we need some definitions:
 - The *level* of a vertex v in a rooted tree is the length of the unique path from the root to this vertex.
 - The *height* of a rooted tree is the maximum of the levels of the vertices.

Example:

- (*i*) Find the level of each vertex in the tree to the right.
- (*ii*) What is the height of the tree?

Balanced *m*-Ary Trees

Definition: A rooted *m*-ary tree of height *h* is balanced if all leaves are at levels h or h - 1.

Example: Which of the rooted trees shown below is balanced?

The Bound for the Number of Leaves in an *m*-Ary Tree

Theorem 5: There are at most m^h leaves in an *m*-ary tree of height *h*.

Proof (by mathematical induction on height):

BASIS STEP: Consider an *m*-ary trees of height 1. The tree consists of a root and no more than *m* children, all leaves. Hence, there are no more than $m^1 = m$ leaves in an *m*-ary tree of height 1.

INDUCTIVE STEP: Assume the result is true for all *m*-ary trees of height < h. Let *T* be an *m*-ary tree of height *h*. The leaves of *T* are the leaves of the subtrees of *T* we get when we delete the edges from the root to each of the vertices of level 1.

Each of these subtrees has height $\leq h - 1$. By the inductive hypothesis, each of these subtrees has at most m^{h-1} leaves. Since there are at most m such subtrees, there are at most $m \cdot m^{h-1} = m^h$ leaves in the tree.

Corollary 1: If an *m*-ary tree of height *h* has *l* leaves, then $h \ge \lceil \log_m l \rceil$. If the *m*-ary tree is full and balanced, then $h = \lceil \log_m l \rceil$. (see text for the proof)