Representing Relations

Section 9.3

Representing Relations Using
 Matrices

- A relation between finite sets can be represented using a zeroone matrix.
- Suppose R is a relation from $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ to $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$.
- The relation R is represented by the matrix
$M_{R}=\left[m_{i j}\right]$, where

$$
m_{i j}=\left\{\begin{array}{l}
1 \text { if }\left(a_{i}, b_{j}\right) \in R \\
0 \text { if }\left(a_{i}, b_{j}\right) \notin R
\end{array}\right.
$$

- The matrix representing R has a 1 as its ($i, j)$ entry when a_{i} is related to b_{j} and a 0 if a_{i} is not related to b_{j}.

Examples of Representing Relations Using Matrices
Example 1: Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B containing (a, b) if $a \in A, b \in B$, and $a>b$. What is the matrix representing R ?

Examples of Representing Relations Using Matrices
Example 1: Suppose that $A=\{1,2,3\}$ and $B=\{1,2\}$. Let R be the relation from A to B containing (a, b) if $a \in A, b \in B$, and $a>b$. What is the matrix representing R ?

Solution: Because $R=\{(2,1),(3,1),(3,2)\}$, the matrix is

$$
M_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Examples of Representing Relations Using Matrices (cont.)

Example 2: Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and

$$
B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\} . \text { Which ordered }
$$ pairs are in the relation R represented by the matrix

$$
M_{R}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right] ?
$$

Examples of Representing Relations Using Matrices (cont.)

Example 2: Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and

$$
B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\} . \text { Which ordered pairs }
$$

are in the relation R represented by the matrix

$$
M_{R}=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right] ?
$$

Solution:

$R=\left\{\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{3}\right),\left(a_{2}, b_{4}\right),\left(a_{3}, b_{1}\right),\left\{\left(a_{3}, b_{3}\right),\left(a_{3}, b_{5}\right)\right\}\right.$.

Matrices of Relations on Sets

- If R is a reflexive relation, all the elements on the main diagonal of M_{R} are equal to 1 .

$$
\left[\begin{array}{llllll}
1 & & & & & \\
& 1 & & & & \\
\\
& & 1 & & & \\
& \\
& & & & & \\
& & & \\
& & & & & \\
& & & & & \\
& & & & & 1 \\
& & & & & 1
\end{array}\right]
$$

- R is a symmetric relation, if and only if $m_{i j}=1$ whenever $m_{j i}=1 . R$ is an antisymmetric relation, if and only if $m_{i j}=0$ or $m_{i j}=0$ when $i \neq j$.

(a) Symmetric

(b) Antisymmetric

Example of a Relation on a Set

Example 3: Suppose that the relation R on a set is represented by the matrix

$$
M_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Is R reflexive, symmetric, and/or antisymmetric?

Example of a Relation on a Set

Example 3: Suppose that the relation R on a set is represented by the matrix

$$
M_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements are equal to $1, R$ is reflexive. Because M_{R} is symmetric, R is symmetric and not antisymmetric because both $m_{1,2}$ and $m_{2,1}$ are 1 .

Representing Relations Using Digraphs

Definition: A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

- An edge of the form (a, a) is called a loop.

Example 7: A drawing of the directed graph with vertices a, b, c, and d, and edges $(a, b),(a, d),(b, b),(b, d),(c, a),(c, b)$, and (d, b) is shown here.

Examples of Digraphs Representing Relations

Example 8: What are the ordered pairs in the relation represented by this directed graph?

Examples of Digraphs Representing Relations

Example 8: What are the ordered pairs in the relation represented by this directed graph?

Solution: The ordered pairs in the relation are

$$
\begin{aligned}
& (1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,3) \\
& (4,1), \text { and }(4,3)
\end{aligned}
$$

Determining which Properties a Relation has from its Digraph

- Reflexivity: A loop must be present at all vertices in the graph.
- Symmetry: If (x, y) is an edge, then so is (y, x).
- Antisymmetry: If (x, y) with $x \neq y$ is an edge, then (y, x) is not an edge.
- Transitivity: If (x, y) and (y, z) are edges, then so is (x, z).

Determining which Properties a Relation has from its Digraph - Example 1

- Reflexive?
- Symmetric?
- Antisymmetric?
- Transitive?

Determining which Properties a Relation has from its Digraph - Example 1

- Reflexive? No, not every vertex has a loop
- Symmetric? Yes (trivially), there is no edge from one vertex to another
- Antisymmetric? Yes (trivially), there is no edge from one vertex to another
- Transitive? Yes, (trivially) since there is no edge from one vertex to another

Determining which Properties a Relation has from its Digraph - Example 2

- Reflexive?
- Symmetric?
- Antisymmetric?
- Transitive?

Determining which Properties a Relation has from its Digraph - Example 2

- Reflexive?
- Symmetric?
- Antisymmetric?
- Transitive?

No, there are no loops
No, there is an edge from a to b, but not from b to a
No, there is an edge from d to b and b to d No, there are edges from a to c and from c to b, but there is no edge from a to d

Determining which Properties a Relation has from its Digraph - Example 3

- Reflexive?
- Symmetric?
- Antisymmetric?
- Transitive?

Determining which Properties a Relation has from its Digraph - Example 3

- Reflexive?
- Symmetric?
- Antisymmetric? Yes, whenever there is an edge from one
vertex to another, there is not one going
- Antisymmetric? Yes, whenever there is an edge from one
vertex to another, there is not one going back
- Transitive? No, there is no edge from a to b

No, there are no loops
No, for example, there is no edge from c to a

Join and Meet of Binary Matrices

$$
M_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad M_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

The join of M_{R} and M_{S} :

$$
M_{R} \vee M_{S}=\left[\begin{array}{lll}
1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\
0 \vee 1 & 1 \vee 1 & 0 \vee 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]=M_{R \cup S}
$$

The meet of M_{R} and M_{S} :

$$
M_{R} \wedge M_{S}=\left[\begin{array}{lll}
1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\
0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=M_{R \cap S}
$$

Booleán Product of Binary

 Matrices$$
M_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad M_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& M_{S \circ R}=M_{R} \odot M_{S}= \\
& {\left[\begin{array}{lll}
(1 \wedge 0) \vee(0 \wedge 0) \vee(1 \wedge 1) & (1 \wedge 1) \vee(0 \wedge 0) \vee(1 \wedge 0) & (1 \wedge 0) \vee(0 \wedge 1) \vee(1 \wedge 1) \\
(1 \wedge 0) \vee(1 \wedge 0) \vee(0 \wedge 1) & (1 \wedge 1) \vee(1 \wedge 0) \vee(0 \wedge 0) & (1 \wedge 0) \vee(1 \wedge 1) \vee(0 \wedge 1) \\
(0 \wedge 0) \vee(0 \wedge 0) \vee(0 \wedge 1) & (0 \wedge 1) \vee(0 \wedge 0) \vee(0 \wedge 0) & (0 \wedge 0) \vee(0 \wedge 1) \vee(0 \wedge 1)
\end{array}\right]=} \\
& {\left[\begin{array}{lcc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Example

$$
M_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

What is $M_{R^{2}}$?

Example

$$
M_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

What is $M_{R^{2}}$?

$$
M_{R^{2}}=M_{R \circ R}=M_{R} \odot M_{R}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

