CS228 - Relations

Nathan Sprague

March 5, 2014

Material in these slides is from "Discrete Mathematics and Its Applications 7e", Kenneth Rosen, 2012.

Relations

Definition

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

- $a R b$ denotes that $(a, b) \in R$
- $a \mathbb{R} b$ denotes that $(a, b) \notin R$

Example

■ $A=$ All US city names.
$B=$ All US states.
$R=\{(a, b) \mid$ A city with name a is located in state b.

- (Harrisonburg, Virginia) $\in R$
- Harrisonburg R Virginia

■ Relations are not functions:

- Franklin R Virginia
- Franklin R Ohio

Displaying Relations

- $A=\{0,1,2\}$
$B=\{a, b\}$
$R=\{(0, a),(0, b),(1, a),(2, b)\}$

R	a	b
0	\times	\times
1	\times	
2		\times

Relations On a Set

Definition

A relation on a set A is a relation from A to A.

Relations on the set of integers:

$$
\begin{aligned}
& \square R_{1}=\{(a, b) \mid a \leq b\} \\
& R_{2}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}
\end{aligned}
$$

Which relations contain $(1,1),(1,2),(2,1),(1,-1)$?

Refelexive Relations

Definition

A relation R on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$.

Relations on the set of integers:

$$
\begin{aligned}
& \square R_{1}=\{(a, b) \mid a \leq b\} \\
& R_{2}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}
\end{aligned}
$$

Which are reflexive?

Symmetric and Antisymmetric Relations

Definition

A relation R on a set A is called symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.

A relation R on a set A such that for all $a, b \in A$, if $(b, a) \in R$ and $(a, b) \in R$, then $a=b$ is called antisymmetric.

Relations on the set of integers:

■ $R_{1}=\{(a, b) \mid a \leq b\}$
■ $R_{2}=\{(a, b) \mid a>b\}$
■ $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$

Which are symmetric? antisymmetric?

Transitive Relations

Definition

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$, for all $a, b, c \in A$.

Relations on the set of integers:

$$
\begin{aligned}
& R_{1}=\{(a, b) \mid a \leq b\} \\
& R_{2}=\{(a, b) \mid a>b\} \\
& R_{3}=\{(a, b) \mid a=b \text { or } a=-b\}
\end{aligned}
$$

Which are transitive?

Composites of Relations

Definition

Let R be a relation from set A to set B and S a relation from B to set C. The composite of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

Example

- $A=$ All first names in the US.
$B=$ All city names in the US.
$C=$ All US states.
$R=\{(a, b) \mid$ A person with name a is located in city b.
$S=\{(b, c) \mid$ A city with name b is located in state c.
- What is $S \circ R$?

Example

- $A=$ All first names in the US.
$B=$ All city names in the US.
$C=$ All US states.
$R=\{(a, b) \mid$ A person with name a is located in city b.
$S=\{(b, c) \mid$ A city with name b is located in state c.
- What is $S \circ R$?
- $S \circ R=\{(a, c) \mid \mathrm{A}$ person with name a is located in state c.

Powers of Relations

Definition

Let R be a relation on the set A. The powers R^{n}, $n=1,2,3, \ldots$, are defined recursively by
$R^{1}=R$ and $R^{n+1}=R^{n} \circ R$.

