CS228

Nathan Sprague

January 27, 2014

Prime Numbers

Definition

An integer p greater than is called prime if the only positive factors of p are 1 and p. A positive integer greater than 1 that is not prime is called composite.

Fundamental Theorem of Arithmetic

Theorem

Fundamental Theorem of Arithmetic Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Example:

$$
100=2 \cdot 2 \cdot 5 \cdot 5=2^{2} 5^{2}=100
$$

Primality Checking

In Python:

```
def check_prime(n):
    """ Brute force primality testing. """
    for d in xrange(2, int(n**.5) + 1):
        if n % d == 0:
                                return False
    return True
```


Infinitely Many Primes

There are infinitely many primes.
■ Side note: The twin Prime conjecture.

- On April 17th 2013, Yitang Zang Proved the conjecture for a gap of $70,000,000$. http://en.wikipedia.org/wiki/Twin_prime
- As of today, the gap is down to 270 .
http://michaelnielsen.org/polymath1/index.php?title= Bounded_gaps_between_primes

Greatest Common Divisors

Definition

Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and also $d \mid b$ is called the greatest common divisor of a and b. The greatest common divisor of a and b is denoted by $\operatorname{gcd}(a, b)$.

Examples:
$\operatorname{gcd}(24,36)=12$
$\operatorname{gcd}(17,22)=1$

Relatively Prime integers

Definition

The integers a and b are relatively prime if their greatest common divisor is 1 .

Example:
17 and 22 are relatively prime.

Using Prime Factorization to Find gcd

Suppose that the prime factorizations of the positive integers a and b are

$$
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{m}} \quad b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{m}}
$$

Then

$$
\operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \ldots p_{n}^{\min \left(a_{n}, b_{n}\right)}
$$

Example:
Prime factorization of 120: $120=2^{3} \cdot 3 \cdot 5$
Prime factorization of 500: $500=2^{2} \cdot 5^{3}$

$$
\operatorname{gcd}(120,500)=2^{2} 3^{0} 5^{1}=20
$$

Using Prime Factorization to Find Least Common Multiple

Definition

he least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by $\operatorname{Icm}(a, b)$.

Suppose that the prime factorizations of the positive integers a and b are

$$
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{n}^{a_{m}} \quad b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{m}}
$$

Then

$$
\operatorname{Icm}(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} p_{2}^{\max \left(a_{2}, b_{2}\right)} \ldots p_{n}^{\max \left(a_{n}, b_{n}\right)}
$$

Euclidean Algorithm

procedure $\operatorname{GCD}(a, b$: positive integers)
$y:=a$
$x:=b$
while $y \neq 0$ do
$r:=x \bmod y$
$x:=y$
$y:=r$
return \times

Python Lab

- Open the Geany text editor.

■ Make sure it indents with spaces instead of tabs:
■ Edit \rightarrow Preferences \rightarrow Editor \rightarrow Indentation
■ Download primes.py from the course schedule page.
■ Execute it:
■ By typing python primes.py in the terminal or
■ By clicking on the gear icon.
■ Implement Euclid's algorithm and the Base-b expansion algorithm (on the next page)

Base-b Expansion Algorithm

procedure $\operatorname{BASE}-\mathrm{B} \operatorname{ExPANSION}(n, b:$ positive integers with $b>1$)

```
q:= n
k:=0
```

while $q \neq 0$ do
$a_{k}:=q \bmod b$
$q:=q \operatorname{div} b$
$k:=k+1$
return $\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)$

Suggestion: Use a Python list to store $a_{k-1}, \ldots, a_{1}, a_{0}$

