Graphs and Graph Models

Section 10.1

Graphs

Definition: A graph $G=(V, E)$ consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.

Some Terminology

- In a simple graph each edge connects two different vertices and no two edges connect the same pair of vertices.
- Multigraphs may have multiple edges connecting the same two vertices. When m different edges connect the vertices u and v, we say that $\{u, v\}$ is an edge of multiplicity m.
- An edge that connects a vertex to itself is called a loop.
- A pseudograph may include loops, as well as multiple edges connecting the same pair of vertices.

Directed Graphs

Definition: An directed graph (or digraph) $G=(V, E)$ consists of a nonempty set V of vertices (or nodes) and a set E of directed edges (or arcs). Each edge is associated with an ordered pair of vertices. The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

Remark:

- Graphs where the end points of an edge are not ordered are said to be undirected graphs.

Graph Terminology: Summary

TABLE 1 Graph Terminology.

Type	Edges	Multiple Edges Allowed?	Loops Allowed?
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Directed	Yes	Yes
Mixed graph	Directed and undirected	Yes	Yes

Graph Terminology and Special Types of Graphs
 Section 10.2

Basic Terminology

Definition 1. Two vertices u, v in an undirected graph G are called adjacent (or neighbors) in G if there is an edge e between u and v. Such an edge e is called incident with the vertices u and v and e is said to connect u and v.

Definition 2. The set of all neighbors of a vertex v of $G=(V, E)$, denoted by $N(v)$, is called the neighborhood of v. If A is a subset of V, we denote by $N(A)$ the set of all vertices in G that are adjacent to at least one vertex in A. So,

$$
N(A)=\bigcup_{v \in A} N(v) .
$$

Definition 3. The degree of a vertex in a undirected graph is the number of edges incident with it, except that a loop at a vertex contributes two to the degree of that vertex. The degree of the vertex v is denoted by $\operatorname{deg}(v)$.

Degrees of Vertices

Theorem 1 (Handshaking Theorem): If $G=(V, E)$ is an undirected graph with m edges, then

$$
2 m=\sum_{v \in V} \operatorname{deg}(v)
$$

Proof:

Each edge contributes twice to the degree count of all vertices. Hence, both the left-hand and right-hand sides of this equation equal twice the number of edges.

Think about the graph where vertices represent the people at a party and an edge connects two people who have shaken hands.

Directed Graphs

Recall the definition of a directed graph.
Definition: An directed graph $G=(V, E)$ consists of V, a nonempty set of vertices (or nodes), and E, a set of directed edges or arcs. Each edge is an ordered pair of vertices. The directed edge (u, v) is said to start at u and end at v.

Definition: Let (u, v) be an edge in G. Then u is the initial vertex of this edge and is adjacent to v and v is the terminal (or end) vertex of this edge and is adjacent from u. The initial and terminal vertices of a loop are the same.

Directed Graphs (continued)

Definition: The in-degree of a vertex v, denoted $\operatorname{deg}^{-}(v)$, is the number of edges which terminate at v. The out-degree of v, denoted $\operatorname{deg}^{+}(v)$, is the number of edges with v as their initial vertex.

Example: In the graph G we have

$$
\begin{aligned}
& \operatorname{deg}^{-}(a)=2, \operatorname{deg}^{-}(b)=2, \operatorname{deg}^{-}(c)=3 \\
& \operatorname{deg}^{-}(d)=2, \operatorname{deg}^{-}(e)=3, \operatorname{deg}^{-}(f)=0 \\
& \operatorname{deg}^{+}(a)=4, \operatorname{deg}^{+}(b)=1, \operatorname{deg}^{+}(c)=2 \\
& \operatorname{deg}^{+}(d)=2, \operatorname{deg}^{+}(e)=3, \operatorname{deg}^{+}(f)=0
\end{aligned}
$$

Directed Graphs (continued)

Theorem 3: Let $G=(V, E)$ be a graph with directed edges. Then:

$$
|E|=\sum_{v \in V} d e g^{-}(v)=\sum_{v \in V} d e g^{+}(v)
$$

Proof: The first sum counts the number of outgoing edges over all vertices and the second sum counts the number of incoming edges over all vertices. It follows that both sums equal the number of edges in the graph.

Special Types of Simple Graphs: Complete Graphs

 A complete graph on n vertices, denoted by K_{n}, is the simple graph that contains exactly one edge between each pair of distinct vertices.

Special Types of Simple Graphs: Cycles and Wheels

A cycle C_{n} for $n \geq 3$ consists of n vertices $v_{1}, v_{2}, \cdots, v_{n}$, and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \cdots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}$.

C_{3}

C_{4}

C_{5}

C_{6}

A wheel W_{n} is obtained by adding an additional vertex to a cycle C_{n} for $n \geq 3$ and connecting this new vertex to each of the n vertices in C_{n} by new edges.

W_{3}

W_{4}

W_{5}

Special Types of Simple Graphs: n-Cubes

An n-dimensional hypercube, or n-cube, \boldsymbol{Q}_{n}, is a graph with 2^{n} vertices representing all bit strings of length n, where there is an edge between two vertices that differ in exactly one bit position.

Q_{2}

Q_{3}

Bipartite Graphs

Definition: A simple graph G is bipartite if V can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge connects a vertex in $V 1$ and a vertex in V_{2}. In other words, there are no edges which connect two vertices in V_{1} or in V_{2}.

It is not hard to show that an equivalent definition of a bipartite graph is a graph where it is possible to color the vertices red or blue so that no two adjacent vertices are the same color.
H is not bipartite
G is
bipartite

G
 since if we color a red, then the adjacent vertices f and b must both be blue.

Complete Bipartite Graphs

Definition: A complete bipartite graph $K_{m, n}$ is a graph that has its vertex set partitioned into two subsets V_{1} of size m and V_{2} of size n such that there is an edge from every vertex in V_{1} to every vertex in V_{2}.

$K_{2,3}$

$K_{3,3}$

$K_{3,5}$

$K_{2,6}$

New Graphs from Old

Definition: A subgraph of a graph $G=(V, E)$ is a graph (W, F), where $W \subset V$ and $F \subset E$. A subgraph H of G is a proper subgraph of G if $H \neq G$.

Example: Here we show K_{5} and one of its subgraphs.

Definition: Let $G=(V, E)$ be a simple graph. The subgraph induced by a subset W of the vertex set V is the graph (W, F), where the edge set F contains an edge in E if and only if both endpoints are in W.

Example: Here we show K_{5} and the subgraph by $W=\{a, b, c, e\}$.

induced

New Graphs from Old (continued)

Definition: The union of two simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the simple graph with vertex set $V_{1} \cup V_{2}$ and edge set $E_{1} \cup E_{2}$. The union of G_{1} and G_{2} is denoted by $G_{1} \cup G_{2}$.

Example:

(a)

(b)

