Finite-State Machines with No Output Section 13.3

anguages

- A vocabulary (or alphabet) V is a finite non-empty set of elements called symbols.
- A word (or sentence) over V is a string of finite length of elements of V.
- The empty string or null string, denoted by λ, is the string containing no symbols.
- The set of all words over V is denoted by V^{*}.
- A language over V is a subset of V .

Set of Strings

- The concatenation of A and B, where A and B are subsets of V^{*}, denoted by $A B$, is the set of all strings of the form $x y$, where x is a string in A and y is a string in B.
- Let $A=\{0,11\}$ and $B=\{1,10,110\}$. Then

$$
A B=\{01,010,0110,111,110,11110\}
$$

and

$$
B A=\{10,111,100,1011,1100,11011\}
$$

Set of Strings

- If A is a subset of V^{*}, the Kleene closure of A, denoted by A^{*}, is the set consisting of arbitrarily long strings of elements of A. That is,

$$
A^{*}=\bigcup_{k=0}^{\infty} A^{k}
$$

- The Kleene closures of the sets $A=\{0\}, B=\{0,1\}$ and $C=\{11\}$ are

$$
\begin{aligned}
& A^{*}=\left\{0^{n} \mid n=0,1,2, \ldots\right\} \\
& B^{*}=V^{*} \\
& C^{*}=\left\{1^{2 n} \mid n=0,1,2, \ldots .\right\}
\end{aligned}
$$

Language Recognition by FSAs

- A string x is said to be recognized (or accepted) by the machine $M=\left(S, I, f, s_{0}, F\right)$ if it takes the initial state s_{0} to a final state, that is, $f\left(s_{0}, x\right)$. The language recognized (or accepted) by M, denoted by $L(M)$, is the set of all strings that are recognized by M. Two finite-state automata are called equivalent if they recognize the same language.
- The only final state of M_{1} is s_{0}. The strings that take s_{0} to itself consist of zero or more consecutive 1 s . Hence,

$$
L\left(M_{1}\right)=\left\{1^{n} \mid n=0,1,2, \ldots\right\} .
$$

M_{1}

Language Recognition by FSAs

- The only final state of M_{2} is s_{2}. The strings that take s_{0} to s_{2} are 1 and 01 . Hence, $L\left(M_{2}\right)=\{1,01\}$.

M_{3}
- The final state of M_{3} are s_{0} and s_{3}. The strings that take s_{0} to itself are $\lambda, 0,00,000, \ldots$. The strings that take s_{0} to s_{3} are a string of zero or more consecutive 0 s , followed by 10, followed by any string. Hence,

$$
L\left(M_{3}\right)=\left\{0^{n}, 0^{n} 10 x \mid n=0,1,2, \ldots ., \text { and } x \text { is any string }\right\}
$$

Language Recognition by

FSAs (cont.)
Example: Construct a FSA that recognizes the set of bit strings that begin with two 0s.

Language Recognition by
 FSAs (cont.)

Example: Construct a FSA that recognizes the set of bit strings that begin with two 0s.

NDFSA

- A nondeterministic finite-state automaton $M=\left(S, I, f, s_{0}, F\right)$ consists of a finite set S of states, a finite input alphabet I, a transition function f that assigns a set of states to every pair of state and input (so that $f: S \times I \rightarrow P(S))$, an initial or start state s_{0}, and a subset F of S consisting of final (or accepting) states.

TABLE 2		
State	\boldsymbol{r}	
	Input	
s_{0}	s_{0}, s_{1}	s_{3}
s_{1}	s_{0}	s_{1}, s_{3}
s_{2}		s_{0}, s_{2}
s_{3}	s_{0}, s_{1}, s_{2}	s_{1}

Finding an Equivalent DFSA

Example: Find a DFSA that recognizes the same language as the NFSA:

TABLE 3		
	$\boldsymbol{c} \boldsymbol{f}$	
State	$\mathbf{0}$	
s_{0}	s_{0}, s_{2}	s_{1}
s_{1}	s_{3}	s_{4}
s_{2}		s_{4}
s_{3}	s_{3}	
s_{4}	s_{3}	s_{3}

