CS228 - Cryptography

Nathan Sprague

January 31, 2014

Shift Ciphers

■ Encrypt: $f(p)=(p+k) \bmod 26$
■ Decrypt: $f^{-1}(p)=(p-k) \bmod 26$
Example: Caesar cipher shifts by 3
Plain: ABCD EFGH IJKL MNOP QRST UVWX YZ
Cipher: DEFG HIJK LMNO PQRS TUVW XYZA BC

Cryptanalysis - Breaking Codes

■ Shift ciphers are very easy to attack.
■ Brute force, or

- Letter frequency

Block Ciphers

Block ciphers help prevent frequency attacks
Transposition:
$\sigma(1)=3$
$\sigma(2)=1$
$\sigma(3)=4$
$\sigma(4)=2$
Encrypt: PIRATE ATTACK (IAPR ETTA AKTC)
Decrypt: SWUE TRAE OEHS (USE WATER HOSE)
(Note: frequency analysis will reveal that this is probably a transposition cipher.)

RSA: Generating Keys

RSA Uses different Keys for encryption/decryption
(Public) Encryption key: (e, n)
(Private) Decryption key: (d, n)

RSA: Generating Keys

RSA Uses different Keys for encryption/decryption
(Public) Encryption key: (e, n)
(Private) Decryption key: (d, n)

- Select two large (200 digit-ish) prime numbers p and q.
- This can be done efficiently.
- $n=p q$

RSA: Generating Keys

RSA Uses different Keys for encryption/decryption
(Public) Encryption key: (e, n)
(Private) Decryption key: (d, n)

- Select two large (200 digit-ish) prime numbers p and q.
- This can be done efficiently.
- $n=p q$

■ Pick an e that is relatively prime to $(p-1)(q-1)$

- Euclidean Algorithm can be used to check if

$$
\operatorname{gcd}(e,(p-1)(q-1))=1
$$

RSA: Generating Keys

RSA Uses different Keys for encryption/decryption
(Public) Encryption key: (e, n)
(Private) Decryption key: (d, n)

- Select two large (200 digit-ish) prime numbers p and q.
- This can be done efficiently.
- $n=p q$

■ Pick an e that is relatively prime to $(p-1)(q-1)$
■ Euclidean Algorithm can be used to check if

$$
\operatorname{gcd}(e,(p-1)(q-1))=1
$$

■ Solve for d such that $d e \equiv 1(\bmod (p-1)(q-1))$

- We know that there is such a d because of Theorem 1 in section 4.4
- It can be found efficiently... Process is described in section 4.4.

RSA: Encryption

■ Convert blocks of text into integers $m_{1}, m_{2}, \ldots m_{k}$, where each $m_{i}<n$.
■ Encrypt the blocks:

- $c_{i}=m_{i}^{e} \bmod n$

■ Modular exponentiation can be done efficiently using algorithm from Section 4.2.

RSA: Decryption

■ Decrypt the blocks:
■ $m_{i}=c_{i}^{d} \bmod n$

- Textbook presents an argument that this works using Fermat's little theoreom and the Chinese remainder theoerom from Section 4.4.

■ Convert the blocks back into text.

RSA: Public and Private Keys

■ Recall the encryption step:

- $c_{i}=m_{i}^{e} \bmod n$

■ Even if you know c_{i}, e and n, it is not possible to efficiently find m_{i}.
■ You can decrypt if you know d :

- $m_{i}=c_{i}^{d} \bmod n$
$■$ Our method for finding d depends on knowing p and q.
■ No problem!(?) Just factor n...

Public Key Applications: Digital Signatures

■ "Encrypt" your message with your private key.
■ The recipient "decrypts" your message with your public key.
■ Recipient knows the message came from you.

