CS228 - Closures (Section 9.4)

Nathan Sprague

March 19, 2014

Material in these slides is from "Discrete Mathematics and Its Applications 7e", Kenneth Rosen, 2012.

Closures

■ "In general, let R be a relation on a set A. R may or may not have some property \mathbf{P} such as reflexivity, symmetry or transitivity. If there is a relation S with property \mathbf{P} containing R such that S is a subset of every relation with property \mathbf{P} containing R, then S is called the closure of R with respect to \mathbf{P}."

- Less formally: The \mathbf{P}-closure of R is the smallest superset of R that has property \mathbf{P}.

Reflexive Closure

■ Reflexive closure of $R=R \cup \triangle$
■ where $\triangle=\{(a, a) \mid a \in A\}$ (diagonal relation).
■ Example: $R=\{(a, b) \mid a<b\}$
$\square R \cup \triangle=\{(a, b) \mid a \leq b\}$

Reflexive closure of $R=\{(1,1),(1,2),(2,1),(3,2)\}$ on the set $S=\{1,2,3,4\} ?$

Symmetric Closure

- Symmetric closure of $R=R \cup R^{-1}$

■ $R^{-1}=\{(b, a) \mid(a, b) \in R\} \quad$ inverse

- $\bar{R}=\{(a, b) \mid(a, b) \notin R\} \quad$ complement

Example: $R=\{(a, b) \mid a>b\}$
$R \cup R^{-1}=$

Symmetric Closure

■ Symmetric closure of $R=R \cup R^{-1}$
■ $R^{-1}=\{(b, a) \mid(a, b) \in R\} \quad$ inverse

- $\bar{R}=\{(a, b) \mid(a, b) \notin R\} \quad$ complement

Example: $R=\{(a, b) \mid a>b\}$

$$
R \cup R^{-1}=\{(a, b) \mid a \neq b\}
$$

Transitive Closure

Not so simple...
$R=\{(1,3),(1,4),(2,1),(3,2)\}$
Can't just add $(1,2),(2,3),(2,4),(3,1)$ missing e.g., $(3,4)$

Paths

- Graph G is set of V vertices and E edges (edge is an ordered pair (a, b) of vertices)
■ Path from a to b in G is a sequence of edges
■ Denoted by $x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ (length n) where $x_{0}=a$ and $x_{n}=b$.
- A circuit or cycle is path of length $n \geq 1$ that begins and ends at same vertex.

Transitive Closure

Theorem (page 600):
There is a path of length n from a to b iff $(a, b) \in R^{n}$ Recall: $R^{1}=R$ and $R^{n+1}=R^{n} \circ R$

Proof by induction:
true when $n=1$ (by definition)
assume true for k (inductive hypothesis)
path of length $k+1$ from (a, b) iff there is some c s.t.:
$(a, c) \in R$ and $(c, b) \in R^{k}$
LHS: path of length 1 to c
RHS: path of length n from c to b
By IH, c exists iff $(a, b) \in R^{k+1}$

Connectivity Relation

Let R be a relation on set A. The Connectivity relation R^{*} consists of the pairs (a, b) such that there is a path of length at least one from a to b in R.

$$
R^{*}=\bigcup_{n=1}^{\infty} R^{n}
$$

(Note that $R^{*}=\bigcup_{n=1}^{\infty} R^{n}=\bigcup_{n=1}^{n} R^{n}$)

Connectivity Relation Example

■ Example: $R=\{(a, b) \mid$ state a borders state $b\}$

- What is R^{1} for Virginia? (VA,WV), (VA,MD), (VA,NC), (VA,TN), (VA,KY)
- What is R^{2} for Virginia? (VA,VA), (VA,OH), (VA,PA), (VA,DE), ...
- $R^{n}=$ crossing exactly n state borders
- $R^{*}=$ crossing any \# of borders (all pairs except with Alaska / Hawaii)

Transitive Closure

Theorem: Transitive closure of R equals R^{*}
Proof sketch:
$1 R^{*}$ contains R by definition
$2 R^{*}$ is transitive - just follow the paths
3 Any transitive S that contains R must also contain R^{*} (see page 601)

Computing Transitive Closure

Theorem: Let M_{R} be the zero-one matrix of R on a set with n elements

$$
M_{R^{*}}=M_{R} \vee M_{R}^{[2]} \vee \cdots \vee M_{R}^{[n]}
$$

Computing Transitive Closure

procedure TRANSITIVE CLOSURE $\left(\mathbf{M}_{R}: 0-1 n \times n\right.$ matrix $)$ $\mathbf{A}:=\mathbf{M}_{R}$
$\mathbf{B}:=\mathbf{A}$
for $i:=2$ to n
$\mathbf{A}:=\mathbf{A} \odot \mathbf{M}_{R}$
$\mathbf{B}:=\mathbf{B} \vee \mathbf{A}$
return B
$O\left(n^{4}\right)$ because $n * n^{3}($ for $\odot)$

Warshall's Algorithm

■ Possible to calculate transitive closure in $O\left(n^{3}\right)$ steps

- Algorithm based on interior vertices of the paths

■ Construct sequence of zero-one matrices $W_{k}=\left[w_{i j}^{(k)}\right]$

- $w_{i j}^{(k)}=1$ if there is a path from v_{i} to v_{j} such that all interior vertices are in the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$
■ Note that $W_{n}=M_{R^{*}}$

Warshall's Algorithm

procedure Warshall $\left(\mathbf{M}_{R}\right.$: 0-1 $n \times n$ matrix $)$
$\mathbf{W}:=\mathbf{M}_{R}$
for $k:=1$ to n
for $i:=1$ to n
for $j:=1$ to n

$$
w_{i j}:=w_{i j} \vee\left(w_{i k} \wedge w_{k j}\right)
$$

return W

Warshall Example

$$
\mathbf{W}_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Warshall Example

$$
\begin{aligned}
& \mathbf{W}_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], \mathbf{W}_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \mathbf{W}_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right], \mathbf{W}_{4}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

