Sets and Set Operations

The questions below will refer the following sets:

$$\begin{array}{ll} A = \{a,b,\{a,b\}\} & \qquad C = \{\{\emptyset\}\} & \qquad E = \mathcal{P}(A) \\ B = \{a,b,c\} & \qquad D = \{x \mid \exists \ k \in \mathcal{Z}, x = 2k\} & \qquad F = \emptyset \end{array}$$

Venn Diagrams

Draw a Venn diagram illustrating the relationship between sets A and B

Subsets

Complete the following tables:

	True or False
$A \subseteq A$	
$A \subset A$	
$A \subseteq B$	
$A \subset B$	
$B \subseteq A$	
$B \subset A$	

	True or False
$A \subseteq C$	
$C \subseteq A$	
$A \subseteq E$	
$E \subseteq A$	
$A \subseteq F$	
$F \subseteq A$	

Cardinality

Complete the following table:

	Cardinality
A	
B	
C	
D	
E	
F	

Cartesian Products

What is the Cartesian product of A and B?

What is the Cartesian product of B and D? (Use set-builder notation.)

$$\begin{array}{ll} A = \{a,b,\{a,b\}\} & C = \{\{\emptyset\}\} & E = \mathcal{P}(A) \\ B = \{a,b,c\} & D = \{x \mid \exists \ k \in \mathcal{Z}, x = 2k\} & F = \emptyset \end{array}$$

Set Operations

Г

Fill in each entry in the following table with the result of performing the indicated set operation.

	Resulting Set	
$A \cap A$		
$A \cap B$		
$B \cap A$		
$A \cup F$		
$B \cap F$		

	Resulting Set
$A \cap E$	
$A \cup A$	
$B \cup B$	
$A \cup (B \times B)$	
A - B	

Functions

What are the domain and codomain of the floor function?

Is the floor function one-to-one?

Is the floor function onto?

Does the floor function have an inverse?

Consider the functions f(x) and g(x) from \mathcal{R} to \mathcal{R} :

- f(x) = 3x + 1
- g(x) = 2x

What is $f^{-1}(x)$?

What is $(f \circ g)(x)$?