Sets and Set Operations

The questions below will refer the following sets:
$A=\{a, b,\{a, b\}\}$
$C=\{\{\emptyset\}\}$
$E=\mathcal{P}(A)$
$B=\{a, b, c\}$
$D=\{x \mid \exists k \in \mathcal{Z}, x=2 k\}$
$F=\emptyset$

Venn Diagrams

Draw a Venn diagram illustrating the relationship between sets A and B

Subsets

Complete the following tables:

	True or False
$A \subseteq A$	
$A \subset A$	
$A \subseteq B$	
$A \subset B$	
$B \subseteq A$	
$B \subset A$	

	True or False
$A \subseteq C$	
$C \subseteq A$	
$A \subseteq E$	
$E \subseteq A$	
$A \subseteq F$	
$F \subseteq A$	

Cardinality

Complete the following table:

	Cardinality
A	
B	
C	
D	
E	
F	

Cartesian Products

What is the Cartesian product of A and B ?

What is the Cartesian product of B and D? (Use set-builder notation.)
$A=\{a, b,\{a, b\}\}$
$C=\{\{\emptyset\}\}$
$E=\mathcal{P}(A)$
$B=\{a, b, c\}$
$D=\{x \mid \exists k \in \mathcal{Z}, x=2 k\} \quad F=\emptyset$

Set Operations

Fill in each entry in the following table with the result of performing the indicated set operation.

	Resulting Set
$A \cap A$	
$A \cap B$	
$B \cap A$	
$A \cup F$	
$B \cap F$	

	Resulting Set
$A \cap E$	
$A \cup A$	
$B \cup B$	
$A \cup(B \times B)$	
$A-B$	

Functions

What are the domain and codomain of the floor function?

Is the floor function one-to-one?

Is the floor function onto?

Does the floor function have an inverse?

Consider the functions $f(x)$ and $g(x)$ from \mathcal{R} to \mathcal{R} :

- $f(x)=3 x+1$
- $g(x)=2 x$

What is $f^{-1}(x)$?

What is $(f \circ g)(x)$?

