CS 228, Sequence and Summation Exercises

Name:

Some of the questions below are modified versions of exercises from Discrete Mathematics and It's Applications $7 e$ by Kenneth Rosen.

Sequences

What are the terms a_{0}, a_{1}, a_{2} and a_{3} of the sequence $\left\{a_{n}\right\}$, where a_{n} equals
a) $2^{n}+n$
b) $n^{(n+1)!}$
c) $\lceil n / 2\rceil$
d) $\lfloor n / 2\rfloor+\lceil n / 2\rceil$

Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.
a) $a_{n}=3 a_{n-1}, \quad a_{0}=3$
b) $a_{n}=2 a_{n-1}+1, \quad a_{0}=-2$
c) $a_{n}=a_{n-1}+3 n+2, \quad a_{0}=0$
d) $a_{n}=2 a_{n-1}+2 a_{n-2}, \quad a_{0}=1, a_{1}=1$

Use the method of forward substitution to find a closed form solution to the sequence in a).

Use the method of forward substitution to find a closed form solution to the sequence in b).

Use the method of forward substitution to find a closed form solution to the sequence in c). This one is more difficult. The "Useful Summation Formulae" from p. 166 may be helpful. Particularly $\sum_{k=1}^{n} k=n(n+1) / 2$

Summations

Calculate the following sums:
a) $\sum_{i=1}^{5} i-3$
b) $\sum_{i=0}^{4}(-3)^{i}$
c) $\sum_{i \in A} i^{2} \quad$ where $A=\{x \in \mathcal{Z} \mid 0<x<6 \wedge x \neq 3\}$
d) $\sum_{k=3}^{n} k \quad$ (recall that $\left.\sum_{k=1}^{n} k=n(n+1) / 2\right)$
e) $\sum_{i=1}^{2} \sum_{j=1}^{3} 2 i+j$
f) $\sum_{i=1}^{3} \sum_{j=i}^{3} j$

