CS 228, Euler and Hamiltonian Paths
Name:

Some questions are from Discrete Mathematics and It's Applications 7e by Kenneth Rosen.

Consider the following graphs:

- Which of these graphs have Euler paths and which have Euler circuits?
- Which of these graphs have Hamiltonian paths and which have Hamiltonian circuits? In each case either provide the path or argue that it does not exist.
- Execute the following algorithm to find an Euler circuit of the graph below. Whenever a vertex or edge must be chosen arbitrarily, use alphabetical order to determine the choice. Draw H and indicate the value of circuit after each iteration.

```
procedure \(\operatorname{EulER}(G:\) connected multigraph with all vertices of even degree)
    circuit \(:=\) a circuit in \(G\) beginning at an arbitrarily chosen vertex with edges
        successively added to form a path that returns to this vertex
    \(H:=G\) with the edges of this circuit removed
    while \(H\) has edges
        subcircuit \(:=\) a circuit in \(H\) beginning at a vertex in \(H\) that also is an endpoint
            of an edge in circuit
        \(H:=H\) with edges of subcircuit and all isolated vertices removed
        circuit \(:=\) circuit with subcircuit inserted at the appropriate vertex
    return circuit
```


