Binary Arithmetic



* Topics
- Basic addition
- Overflow
— Multiplication & division
- Floating-point preview



I Basic addition

* Binary and hex addition are fundamentally the same as
decimal addition

- Add digit-by-digit, using a carry as necessary
- Result could require one more bit than the operands

Dec Bin

12540 10011100
+_4683 +_1010110

be994f Hex
+ 7120

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits



I Basic addition

* Binary and hex addition are fundamentally the same as
decimal addition

- Add digit-by-digit, using a carry as necessary
- Result could require one more bit than the operands

11 Dec 111 Bin
12540 100111060
+_4683 +_10101710
17223 11110010

1
be994f Hex

+ 7120
b10a6f

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits



e Unsigned addition is subject to overflow
— Caused by truncation to integer size

1
994f

+_ 7120
10a6f = 0a6f
- f

Truncation!

(assume a 16-bit integer)

16
14
12
10

=T S

-

12 14

Figure 2.23 Unsigned addition. With a 4-bit wo
modulo 16.

it |

rd size, addition is performed



I Overflow

* Two’s complement addition is identical to unsigned mechanically
- Subject to both positive and negative overflow
- Overflows if carry-in and carry-out differ for sign bit

— Same for subtraction (overflows if borrow-in and borrow-out of sign bit differ)

Two's complement addition (4-bit word)

Figure 2.24

Relation between integer
and two's-complement
addition. When x + y is
less than =2, there is a
negative overflow. When

it is greater than or equal
to 2¥~1, there is a positive
overflow.

MNormal

Negative |-~
overflow

Pasitive
overflow

-

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a
negative overflow when x + v < —8 and a positive overflow when x + v = 8.

NOTE: this figure is printed incorrectly in your textbook!



Overflow

(sign bits in blue)

Examples (in 4-bit two’s complement):

2’s Comp. 2's Comp. 2's Comp.
© 011 3 1101 -3 © 101 5
+ 0010 + 2 + 0100 + 4 + 0100 + 4
© 101 ) © 001 1 1001 -7

No carry in, no carry out Carry in, carry out Carry in, no carry out

(OK)

Rk o
Rk o
Rk o

No carry in, no carry out

(OK)

(OVERFLOW!)

2's Comp. 2's Comp.
1 © 001 1
+_ -2 -_ 0010 -_ 2
-1 1111 -1

Borrow in, borrow out

Observation: In two’s complement, adding the inverse is equivalent to subtracting!



I Case study: MTG Arena

* “Evra, Halcyon Witness”
- Card from Magic: The Gathering Arena (PC video game)
— Ability: gain player life equal to Evra’s power (“lifelink”)
— Ability: exchange player life total w/ Evra’s power
Alternate abilities to double life every few turns
Overflows at ~2 billion b/c player life is stored as a signed 32-bit integer

“ Legendary Creature — Avatar 9)

Lifelink

4 : Exchange your life total with Evra,
Halcyon Witness’s power.

“Laght fron the Null Moon ook form—a
mirage made real, alowre i gramdair, Folaled
inr - soorld ot onnce had bear dts oton,”
—Fall of the Thran

https://www.youtube.com/watch?v=8cqID91pC3I


https://www.youtube.com/watch?v=8cqID9lpC3I

l Muttiplication & division

 Like addition, fundamentally the same as base 10

— Actually, it's even simpler!
- Same regardless of encoding

* Special case: multiply by powers of 2 (shift left)

2
1
1

4
4

 Division is expensive!

<<
<<

<<
<<
<<

1
2

4
1
2

4
4

16
8
16

*

*

*

>*

*

2)
2 * 2)

2 * 2 * 2 * 2)
2)
2 * 2)

— Special case: divide by powers of two (shift right)

 Logical shift for unsigned numbers, arithmetic shift for signed numbers

101
x_11

101
101
1111



I Review

* One-byte Integers:

Binary Unsigned Two’s C
1111 1111 255 -1 ;E:tri?)rf'ﬁ:tween integer
1111 1110 254 -2 and two’s-complement
addition. When x 4 y is
less than —2»~, there is a
1000 0001 129 -127 negative oveLﬂOW- \»*\a'hen|
1000 0000 128 -128 e
0111 1111 127 127 overflow.
0111 1116 126 126
0000 0001 1 1
0000 00006 0 0
Overflow Positive overflow when x + y > 127

when x +y > 255 Negative overflow when x +y < -128



I Binary fractions

* Now we can store integers
— But what about general real numbers?
* Extend positional binary integers to store fractions

— Designate a certain number of bits for the fractional part
— These bits represent negative powers of two
— (Just like fractional digits in decimal fractions!)

101.101

1/2 1/4 1/8

4 + 1 + 05 + 0125 — 5_625 (alternatively: 5 + 5/8)



I Another problem

* For scientific applications, we want to be able to
store a wide range of values

- From the scale of galaxies down to the scale of atoms
* Doing this with fixed-precision numbers is difficult

- Even signed 64-Dbit integers

* Perhaps allocate half for whole number, half for fraction
 Range: ~2 x 10° through ~2 x 10°



I Floating-point numbers

e Scientific notation to the rescue!

- Traditionally, we write large (or small) numbers as x - 10¢

- This Is how floating-point representations work

* Store exponent and fractional parts (the significand) separately
* The decimal point “floats” on the number line
* Position of point is based on the exponent

0.0123 x 102

©.123 x 106?

1.23 x 10°
12.3 x 101
123.0 x 1072



I Floating-point numbers

* However, computers use binary
- So floating-point numbers use base 2 scientific notation (x - 2°)

* Fixed width field

— Reserve one bit for the sign bit (O is positive, 1 is negative)

— Reserve n bits for biased exponent (bias is 2" - 1)
* Avoids having to use two’s complement

- Use remaining bits for normalized fraction (implicit leading 1)
* Exception: if the exponent is zero, don’t normalize

2.5 - 91000 O;LO

Sign (+) f Significand: (1).01 =2.5

Value = (-1)° x 1.f x 2F Exponent (8 - 7 = 1)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16

