CS 261
Spring 2024

Mike Lam, Professor

3735928559

(convert to hex!)

Binary Information

I Binary information

* Topics
- Base conversions (bin/dec/hex)
- Data sizes
- Byte ordering
- Character and program encodings
- Bitwise operations

What does this mean?

100

Information = Bits + Context

I Why binary?

* Computers store information in binary encodings

— 1 bit Iis the simplest form of information (on / off)
- Minimizes storage and transmission errors

* To store more complicated information, use more bits

- However, we need context to understand them

- Data encodings provide context

- For the next two weeks, we will study encodings

- First, let's become comfortable working with binary

I Base conversions

* Binary encoding is base-2: bit / represents the value 2

~ Bits typically written from most to least significant (i.e., 23 22 21 20)

1 = 1= 1:2°=10001] 1-1=0
5 = +1= 2%+ -1-2°=[0101] 5-4=1 1-1=0
11=8 + 2+1=123+ 12t +1-2°=[1011] 11-8=3 3-2=1 1-1=0
15=8+4+2+1=123+1-22+1-2'+ 1-2°=[1111] 15-8=7 7-4=3 3-2=1 1-1=0

Binary to decimal:
Add up all the powers of two (memorize powers of two to make this go faster!)

Decimal to binary:
Find highest power of two and subtract to find the remainder
Repeat above until the remainder is zero
Every power of two become 1, all other bits are 0

I Remainder system

* Quick method for decimal - binary conversions

Repeatedly divide decimal number by two until zero,
Keeping track of remainders (either O or 1)

Read In reverse to get binary equivalent

=> 1011 (8+2+1)

OFRLMNOIBE
e
P OR R

I Question

* What is the decimal number 25 when
represented in binary?

25
127r

=> 11001 (16 + 8 + 1)

Ok WO
- = =
PR OOR

* Hexadecimal encoding is base-16 (usually prefixed with “0x”)

— Converting between hex and binary is easy
* Each digit represents 4 bits; just substitute digit-by-digit or in groups of four!
- You should memorize (at least some of) these equivalences

* Examples:
- OX4CA <=> 0100 1100 1010
- OX5F0 <=> 0101 1111 0000

* 1 byte = 2 hex digits (= 2 nibbles!) = 8 bits

(most significant) (least significant)
27 26 25 24 23 22 21 20 Value Of
1 byte: 128 64 | 32 | 16 8 4 2 1 !:)yte OxYZ
~— ~ ~— ~ IS 16-Y + Z
1 hex digit (Y) 1 hex digit (2)

' I Prefi Bi D
 Machine word = size of an address renx | Bin | Dec

- (i.e., the size of a pointer in C)

- Early computers used 16-bit addresses
* Could address 2% bytes = 64 KB

- Now 32-bit (4 bytes) or 64-bit (8 bytes)
 Can address 4GB or 16 EB

I Byte ordering

* Big endian: store higher place values at lower addresses
- Most-significant byte (MSB) to least-significant byte (LSB)
— Similar to standard way to write hex (implied with “Ox” prefix)
 Little endian: store lower place values at lower addresses
- Least-significant byte (LSB) to most-significant byte (MSB)
- Default byte ordering on most Intel-based machines

low high
addr addr
Ox11223344 1in big endian: 11 22 33 44

Ox11223344 in little endian: 44 33 22 11

I Byte ordering examples

* Big endian: most significant byte first (MSB to LSB)
 Little endian: least significant byte first (LSB to MSB)

lLow high
0x11223344 in big endian: 11 22 33 44
0x11223344 in little endian: 44 33 22 11
Decimal: 1
16-bit big endian: 00000000 00000001 (hex: 00 01)
16-bit little endian: 00000001 OO0 (hex: 01 00)
Decimal: 19 (16+2+1)
16-bit big endian: 00000000 00010011 (hex: 00 13)
16-bit little endian: 00010011 0000 (hex: 13 00)
Decimal: 256
16-bit big endian: 00000001 OO0 (hex: 01 00)
16-bit little endian: 00000000 O00EEEOO01 (hex: 00 01)

I Question

 What Is the byte in the highest address when
hexadecimal number 0x8345 Is stored In little-
endian ordering?

- A) 0x83
- B) 0x45
- C) Ox34
- D) Ox85
- E) There is not enough information to tell.

I Character encodings

 ASCII ("American Standard Code for Information Interchange")
- 1-byte code developed in 1960s
— Limited support for non-English characters
* Unicode
— Multi-byte code developed in 1990s
- "All the characters for all the writing systems of the world"

— Over 136,000 characters in latest standard
- Fixed-width (UTF-16 and UTF-32) and variable-width (UTF-8)

Number Bits for First Last

of bytes | code point | code point | code point Byte 1 Byte 2 Byte 3 Byte 4
1 7 U+0000 U+007F | @xxxxxxx
UTF-8 2 gl U+0080 U+07FF | 11exxxxx 1@XXXXXX
2 16 U+0800 U+FFFF | 1118xxxx | 1@xXXXxXX LOXXXXXX

o~

21 U+10000 | U+10FFFF | 11110xxx | 1@xxxxxx LOXXXXXX LOXXXXXX

I Program encodings

e Machine code

— Binary encoding of opcodes and operands

- Specific to a particular CPU architecture (e.g., Xx86_64)

int add (int numl, int num2)

{

return numl + num2;

g

0000000000400606 <add>:

}

400606:
400607 :
40060a:
40060d:
400610:
400613:
400616:
400618:
400619:

55
48
89
89
8b
8b
01
5d
c3

89
7d
75
95
45
do

eb
fc
8
fc
8

push
mov
mov
mov
mov
mov
add
pop
retq

%rbp

%rsp,%rbop

%edi, -0x4(%rbp)
%esi, -0Ox8(%rbp)
-0x4(%rbp), %edx
-Ox8(%rbp), %eax
%edx, %eax

%rbp

I Bitwise operations

* Basic bitwise operations « Commutative:

x&y:y&x
& (and) | (or) A (xor) x| y=y]x
/\y:y/\x

* Not boolean algebra!

&& (and) || (or) ! (not) * Associative:

(X &y) &z =x& (y & 2)
(x |y) |l z=x] (| z)

O (false) non-zero (true) (XA V) Az=xA(yAz)

* Important properties: L

P Prop e Distributive:

X &0=0 x & (y | 2z) = (x&y) | (x &z

X & 1 = X X | (y&z)y=(x]y)&((x]z

X | 0 = x

x| 1 =1

X N 0O = X n@ n0 1

X N x =0 AND OR

I Bitwise operations

* Bitwise complement (~) - “flip the bits”
(~0

- ~0000

= 1111

1)

* Left shift (<<) and right shift (>>)
- Equivalent to multiplying (<<) or dividing (>>) by two
1100 1

- Left shift: 0110 << 1

— Logical right shift (fill zeroes):

~1010 = 0101 (~OXA = 0X5)

<< 3= 8
1100 >> 2 = 0011

— Arithmetic right shift (fill most sig. bit): 1100 >> 2 = 1111

On stu:
int:
int:

uint:

uint:

0feOOE00
ffOO0000
0fEOOE00
ffOOO000

>>
>>
>>
>>

0O 0O 00 0O

000TO000
ffffoo00
000TO000
000000

0100 >> 2 = 0001

(arithmetic, for signed integers)

(logical, for unsigned integers)

I Masking

* Bitwise operations can extract parts of a binary value

- This Is referred to as masking; specify a bit pattern mask to
Indicate which bits you want

» Helpful fact: OxF is all 1's in binary!
- Use a bitwise AND (&) with the mask to extract the bits

- Use a bitwise complement (~) to invert a mask

- Example: To extract the lower-order 16 bits of a larger value
V, use “v & OXFFFF”

OXDEADBEEF & OXFFFF = OXOO0O0OBEEF = OXBEEF
OXDEADBEEF & O0OXx0000FFFF = OXO00OBEEF = OXBEEF
OXDEADBEEF & OXFFFFOOO00 = OXDEADOOGO
OXDEADBEEF & ~OXFFFF = OXDEADOOOO
OXDEADBEEF & ~0OXx0000FFFF = OXDEADOOGO

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

